
Chapter 2 

Solving Linear Equations 

2.1 Vectors and Linear Equations 

The central problem of linear algebra is to solve a system of equations. Those equations 
are linear, which means that the unknowns are only multiplied by numbers-we never see 
x times y. Our first linear system is certainly not big. But you will see how far it leads: 

Two equations 
Two unknowns 

x 2y 
3x + 2y 

1 
11 

(1) 

We begin a row at a time. The first equation x - 2y = 1 produces a straight line in the xy 
plane. The point x = 1, Y = 0 is on the line because it solves that equation. The point 
x = 3, y = 1 is also on the line because 3 - 2 = 1. If we choose x = 101 we find y = 50. 

The slope of this particular line is ~, because y increases by 1 when x changes by 2. 
But slopes are important in calculus and this is linear algebra! 

y 
3x+2y = 11 

1 

---+----~~----~r_----~--~~x 

2 3 

Figure 2.1: Row picture: The point (3, 1) where the lines meet is the solution. 

Figure 2.1 shows that line x - 2y = 1. The second line in this "row picture" comes 
from the second equation 3x + 2y = 11. You can't miss the intersection point where the 
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32 Chapter 2. Solving Linear Equations 

two lines meet. The point x = 3, Y = 1 lies on both lines. That point solves both equations 
at once. This is the solution to our system of linear equations . 

.. ROWS The rowpicfureshQws twolines11J,eeiingaiasinglepoint.(thesolltti~"4}.· 
,"' ,'. ' ," '.,,'.. .' . -,' '.- . , -,-, 

Tum now to the column picture. I want to recognize the same linear system as a "vector 
equation". Instead of numbers we need to see vectors. If you separate the original system 
into its columns instead of its rows, you get a vector equation: 

Combination equals b x [ ; ] + y [ -; ] = [ 1 ~ ] = b. (2) 

This has two column vectors on the left side. The problem is to find the combination of 
those vectors that equals the vector on the right. We are multiplying the first column by x 
and the second column by y, and adding. With the right choices x = 3 and y = 1 (the 
same numbers as before), this produces 3(column 1) + I (column 2) = b. 

m 3(column I) 

3(column 1) + 1 (column 2) = b 

column 2 I 

I 

I 
I 

I 

I 

" " 

b 

" 

Figure 2.2: Column picture: A combination of columns produces the right side (1,11). 

Figure 2.2 is the "column picture" of two equations in two unknowns. The first part 
shows the two separate columns, and that first column multiplied by 3. This multiplication 
by a scalar (a number) is one of the two basic operations in linear algebra: 

Scalar multiplication 
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If the components of a vector v are VI and V2, then cv has components CVI and CV2. 

The other basic operation is vector addition. We add the first components and the 
second components separately. The vector sum is (1, 11) as desired: 

Vector addition [ ! ] + [ -; ] = [ I! ]. 
The right side of Figure 2.2 shows this addition. The sum along the diagonal is the vector 
b = (1, 11) on the right side of the linear equations. 

To repeat: The left side of the vector equation is a linear combination of the columns. 
The problem is to find the right coefficients x = 3 and y = 1. We are combining scalar 
multiplication and vector addition into one step. That step is crucially important, because 
it contains both of the basic operations: 

Of course the solution x = 3, y = 1 is the same as in the row picture. I don't know 
which picture you prefer! I suspect that the two intersecting lines are more familiar at first. 
You may like the row picture better, but only for one day. My own preference is to combine 
column vectors. It is a lot easier to see a combination of four vectors in four-dimensional 
space, than to visualize how four hyperplanes might possibly meet at a point. (Even one 
hyperplane is hard enough . .. ) 

The coefficient matrix on the left side of the equations is the 2 by 2 matrix A: 

Coefficient matrix [ 1 -2] 
A = 3 2 . 

This is very typical of linear algebra, to look at a matrix by rows and by columns. Its rows 
give the row picture and its columns give the column picture. Same numbers, different 
pictures, same equations. We write those equations as a matrix problem Ax = b: 

- \. .. 

The row picture deals with the two rows of A. The column picture combines the columns. 
The numbers x = 3 and y = 1 go into x. Here is matrix-vector multiplication: 

D(ltpr()du~t$Witlt;ioW$; 
~()Jt1bil!atio.lof'~()lumns 
.,. ,'-. ',' ,\ -,',1 

Looking ahead This chapter is going to solve n equations in n unknowns (for any n). 
I am not going at top speed, because smaller systems allow examples and pictures and a 
complete understanding. You are free to go faster, as long as matrix multiplication and 
inversion become clear. Those two ideas will be the keys to invertible matrices. 

I can list four steps to understanding elimination using matrices. 
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1. Elimination goes from A to a triangular U by a sequence of matrix steps Eij. 

2. The inverse matrices Ei;t in reverse order bring U back to the original A. 

3. In matrix language that reverse order is A = LU = (lower triangle) (upper triangle). 

4. Elimination succeeds if A is invertible. (It may need row exchanges.). 

The most-used algorithm in computational science takes those steps (MATLAB calls it lu). 
But linear algebra goes beyond square invertible matrices! For m by n matrices, Ax = 0 
may have many solutions. Those solutions will go into a vector space. The rank of A 
leads to the dimension of that vector space. 

All this comes in Chapter 3, and I don't want to hurry. But I must get there. 

Three Equations in Three Unknowns 
The three unknowns are x, y, z. We have three linear equations: 

Ax =b 
x + 2y 

2x + 5y 
6x 3y 

+ 3z 
+ 2z 
+ z 

6 
- 4 

2 
(3) 

We look for numbers x, y, z that solve all three equations at once. Those desired numbers 
might or might not exist. For this system, they do exist. When the number of unknowns 
matches the number of equations, there is usually one solution. Before solving the problem, 
we visualize it both ways: 

ROW The row picture shows three planes meeting at a single point. 

COLUMN The column picture combines three columns to produce (6,4,2). 

In the row picture, each equation produces a plane in three-dimensional space. The first 
plane in Figure 2.3 comes from the first equation x + 2y + 3z = 6. That plane crosses 
the x and y and z axes at the points (6,0,0) and (0,3,0) and (0,0,2). Those three points 
solve the equation and they determine the whole plane. 

The vector (x, y, z) = (0,0,0) does not solve x + 2y + 3z = 6. Therefore that plane 
does not contain the origin. The plane x + 2y + 3z = ° does pass through the origin, and 
it is parallel to x + 2y + 3z = 6. When the right side increases to 6, the parallel plane 
moves away from the origin. 

The second plane is given by the second equation 2x + 5y + 2z = 4. It intersects the 
first plane in a line L. The usual result of two equations in three unknowns is a line L of 
solutions. (Not if the equations were x + 2y + 3z = 6 and x + 2y + 3z = 0.) 

The third equation gives a third plane. It cuts the line L at a single point. That point 
lies on all three planes and it solves all three equations. It is harder to draw this triple 
intersection point than to imagine it. The three planes meet at the solution (which we 
haven't found yet). The column form will now show immediately why z = 2. 
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z 

2x +5y+2z =4 

L L 

/~ 
plane x +2y +3z=6 

x x 

z 

L 

Solution [~J 
__._-f----y 

3rd plane 6x -3y + z =2 

(0,0,0) is not on these planes 

Figure 2.3: Row picture: Two planes meet at a line, three planes at a point. 

The column picture starts with the vector form of the equations Ax = b: 

Combine columns (4) 

The unknowns are the coefficients x, y, z. We want to multiply the three column vectors 
by the correct numbers x, y, z to produce b = (6,4,2). 

m = column I 

2 times column 3 is b = m. [ j] = column 2 

Figure 2.4: Column picture: (x, y, z) = (0,0,2) because 2(3, 2,1) = (6,4,2) = h. 

Figure 2.4 shows this column picture. Linear combinations of those columns can pro­
duce any vector b! The combination that produces b = (6,4,2) is just 2 times the third 
column. The coefficients we need are x = 0, y = 0, and z = 2. 
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The three planes in the row picture meet at that same solution point (0,0,2): 

Correct combination 
(x, y, z) = (0,0,2) 

The Matrix Form of the Equations 

We have three rows in the row picture and three columns in the column picture (plus the 
right side). The three rows and three columns contain nine numbers. These nine numbers 
fill a 3 by 3 matrix A: 

The "coefficient matrix" in Ax = b is A = [; ;;] . 
6 -3 1 

The capital letter A stands for all nine coefficients (in this square array). The letter 
h denotes the column vector with components 6,4,2. The unknown x is also a column 
vector, with components x, y, z. (We use boldface because it is a vector, x because it is 
unknown.) By rows the equations were (3), by columns they were (4), and by matrices they 
are (5): 

Mmrixequation Ax = b U _~ n [ n = U l (5) 

Basic question: What does it mean to "multiply A times x"? We can multiply by rows or 
by columns. Either way, Ax = b must be a correct representation of the three equations. 
You do the same nine multiplications either way. 

Multiplication by rows Ax comes from dot products, each row times the column x: 

: .[·.· .•. Ct<!WJl :~: ~ ] 
:4 .. t .' , •..• :.'.:. ·.: .... ;C ... '. tJ.'-w.< .....• 2 .. :.:.).· ................• ... ~ .. : ........ ; .. ' 
. ..' .... ...(rOHt3) .•. : x . 

(6) 

Multiplication by columns Ax is a combination of column vectors: 

(7) 

When we substitute the solution x = (0,0,2), the multiplication Ax produces h: 

u -~ n U]=2flmescolumn3=Ul 
The dot product from the first row is (1,2,3) • (0,0,2) = 6. The other rows give dot 
products 4 and 2. This book sees Ax as a combination of the columns of A. 
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Example 1 Here are 3 by 3 matrices A and I = identity, with three 1 's and six O's: 

If you are a row person, the dot product of (1,0,0) with (4,5,6) is 4. If you are a column 
person, the linear combination Ax is 4 times the first column (1, 1, 1). In that matrix A, the 
second and third columns are zero vectors. 

The other matrix I is special. It has ones on the "main diagonal". Whatever vector 
this matrix multiplies, that vector is not changed. This is like multiplication by 1, but for 
matrices and vectors. The exceptional matrix in this example is the 3 by 3 identity matrix: 

1 0 o 0] . alw~y$yields the multiplication. I x ....... x. 
o 1 

Matrix Notation 

The first row of a 2 by 2 matrix contains all and a12. The second row contains a21 and 
a22. The first index gives the row number, so that aU is an entry in row i. The second index 
j gives the column number. But those subscripts are not very convenient on a keyboard! 
Instead of aU we type A(i, j). The entry aS7 = A(5, 7) would be in row 5, column 7. 

A = [all a12] = [ A(l,l) 
a21 a22 A(2, 1) 

A(1,2) ] 
A(2,2) . 

For an m by n matrix, the row index i goes from 1 to m. The column index j stops at n. 
There are mn entries aU = A(i, j). A square matrix of order n has n2 entries. 

Multiplication in MATLAB 

I want to express A and x and their product Ax using MATlAB commands. This is a first 
step in learning that language. I begin by defining the matrix A and the vector x. This 
vector is a 3 by 1 matrix, with three rows and one column. Enter matrices a row at a time, 
and use a semicolon to signal the end of a row: 

A = [1 2 3; 2 5 2; 6 -3 1] 

x=[0;0;2] 

Here are three ways to multiply Ax in MATlAB. In reality, A * x is the good way to do it. 
MATlAB is a high level language, and it works with matrices: 



38 Chapter 2. Solving Linear Equations 

We can also pick out the first row of A (as a smaller matrix!). The notation for that I 
by 3 submatrix is A(I, :). Here the colon symbol keeps all columns of row 1: 

Row ata time b = [A(I,:) * x; A(2,:) * x; A(3,:) * x] 

Each entry is a dot product, row times column, I by 3 matrix times 3 by 1 matrix. 
The other way to multiply uses the columns of A. The first column is the 3 by 1 sub­

matrix A(: ,1). Now the colon symbol: is keeping all rows of column 1. This column 
multiplies x(1) and the other columns multiply x(2) and x(3): 

Column at a time b = A(:, 1) * x(1) + A(:, 2) * x(2) + A(:, 3) * x(3) 

I think that matrices are stored by columns. Then multiplying a column at a time will be a 
little faster. So A * x is actually executed by columns. 

You can see the same choice in a FORTRAN-type structure, which operates on single 
entries of A and x. This lower level language needs an outer and inner "DO loop". When 
the outer loop uses the row number I, multiplication is a row at a time. The inner loop 
J = 1, 3 goes along each row I. 

When the outer loop uses J, multiplication is a column at a time. I will do that in 
MATLAB (which really needs two more lines "end" and "end" to close "for i" and "for j "). 

FORTRAN by rows 

DO 10 1=1,3 
DO 10 J = 1,3 
10 B(I) = B(I) + A(I, J) * X(J) 

MATLAB by columns 

for j = I : 3 
for i = 1 : 3 
b(i) = b(i) + A(i, j) * xU) 

Notice that MATLAB is sensitive to upper case versus lower case (capital letters and small 
letters). If the matrix is A then its entries are not a(i, j): not recognized. 

I think you will prefer the higher level A * x. FORTRAN won't appear again in this 
book. Maple and Mathematica and graphing calculators also operate at the higher level. 
Multiplication is A. x in Mathematica. It is multiply (A , x); or equally evalm(A& * x); 
in Maple. Those languages allow symbolic entries a, b, x, .. . and not only real numbers. 
Like MATLAB's Symbolic Toolbox, they give the symbolic answer. 

• REVIEW OF THE KEY IDEAS • 

1. The basic operations on vectors are multiplication cv and vector addition v + w. 

2. Together those operations give linear combinations cv + d w. 

3. Matrix-vector multiplication Ax can be computed by dot products, a row at a time. 
But Ax should be understood as a combination of the columns of A. 

4. Column picture: Ax = b asks for a combination of columns to produce b. 

5. Row picture: Each equation in Ax = b gives a line (n = 2) or a plane (n = 3) or a 
"hyperplane" (n > 3). They intersect at the solution or solutions, if any. 
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• WORKED EXAMPLES • 

2.1 A Describe the column picture of these three equations Ax = b. Solve by careful 
inspection of the columns (instead of elimination): 

Solution The column picture asks for a linear combination that produces b from the 
three columns of A. In this example b is minus the second column. So the solution is 
x = 0, y = -1, z = 0. To show that (0, -1, 0) is the only solution we have to know that 
"A is invertible" and "the columns are independent" and "the determinant isn't zero." 

Those words are not yet defined but the test comes from elimination: We need 
(and for this matrix we find) a full set of three nonzero pivots. 

Suppose the right side changes to b = (4,4,8) = sum of the first two columns. Then 
the good combination has x = 1, Y = 1, Z = 0. The solution becomes x = (1,1,0). 

2.1 B This system has no solution. The planes in the row picture don't meet at a point. 
No combination of the three columns produces b. How to show this? 

x + 3y + Sz = 4 
x + 2y - 3z = 5 

2x + Sy + 2z = 8 

(1) Multiply the equations by 1, 1, -1 and add to get ° = 1. No solution. Are any two of 
the planes parallel? What are the equations of planes parallel to x + 3y + Sz = 4? 

(2) Take the dot product of each column of A (and also b) with y = (1,1,-1). 
How do those dot products show that the system Ax = b has no solution? 

(3) Find three right side vectors b* and b** and b*** that do allow solutions. 

Solution 

(1) Multiplying the equations by 1, 1, -1 and adding gives ° = 1: 

x + 3y + Sz = 4 
x +2y -3z = 5 

-[2x + Sy + 2z = 8] 
Ox + Oy + Oz = 1 No Solution 

The planes don't meet at a point, even though no two planes are parallel. For a plane 
parallel to x + 3y + Sz = 4, change the "4". The parallel plane x + 3y + Sz = ° 
goes through the origin (0,0,0). And the equation multiplied by any nonzero con­
stant still gives the same plane, as in 2x + 6y + lOz = 8. 
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(2) The dot product of each column of A with y = (1,1, -1) is zero. On the right side, 
y • h = (1,1, -1). (4,5,8) = 1 is not zero. So a solution is impossible. 

(3) There is a solution when h is a combination of the columns. These three choices of 
h have solutions x* = (1,0,0) and x** = (1,1,1) and x*** = (0,0,0): 

b* = m = firnt column b** = m = sum of columns b*** = m 
Problem Set 2.1 

Problems 1-8 are about the row and column pictures of Ax = h. 

1 With A = I (the identity matrix) draw the planes in the row picture. Three sides of 
a box meet atthe solution x = (x, y, z) = (2,3,4): 

g; ! !~ H;! or [g! ~] [n = [! l 
Draw the vectors in the column picture. Two times column 1 plus three times column 
2 plus four times column 3 equals the right side h. 

2 If the equations in Problem 1 are multiplied by 2, 3, 4 they become DX = B: 

2x +Oy + Oz = 4 
Ox + 3y + Oz = 9 
Ox + Oy + 4z = 16 

or 

Why is the row picture the same? Is the solution X the same as x? What is changed 
in the column picture-the columns or the right combination to give B? 

3 If equation 1 is added to equation 2, which of these are changed: the planes in the 
row picture, the vectors in the column picture, the coefficient matrix, the solution? 
The new equations in Problem 1 would be x = 2, x + y = 5, Z = 4. 

4 Find a point with z = 2 on the intersection line of the planes x + y + 3z = 6 and 
x - y + z = 4. Find the point with z = O. Find a third point halfway between. 

5 The first of these equations plus the second equals the third: 

x+ y+ z=2 
x + 2y + z = 3 

2x + 3y + 2z = 5. 

The first two planes meet along a line. The third plane contains that line, because 
if x, y, z satisfy the first two equations then they also . The equations have 
infinitely many solutions (the whole line L). Find three solutions on L. 
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6 Move the third plane in Problem 5 to a parallel plane 2x + 3y + 2z = 9. Now the 
three equations have no solution-why not? The first two planes meet along the line 
L, but the third plane doesn't that line. 

7 In Problem 5 the columns are (1, 1,2) and (1,2,3) and (1, 1,2). This is a "singular 
case" because the third column is . Find two combinations of the columns that 
give b = (2,3,5). This is only possible for b = (4,6, c) if c = __ 

8 Normally 4 "planes" in 4-dimensional space meet at a Normally 4 col­
umn vectors in 4-dimensional space can combine to produce b. What combination 
of (1,0,0,0), (1,1,0,0), (1,1,1, 0), (1,1,1,1) produces b = (3,3,3, 2)? What 4 
equations for x, y, z, t are you solving? 

Problems 9-14 are about multiplying matrices and vectors. 

9 Compute each Ax by dot products of the rows with the column vector: 

[-~ 
2 nm 

2 1 0 0 1 
1 2 1 0 1 

(a) 3 (b) 
0 1 2 1 1 

-4 1 
0 0 1 2 2 

10 Compute each Ax in Problem 9 as a combination of the columns: 

How many separate multiplications for Ax, when the matrix is "3 by 3"? 

11 Find the two components of Ax by rows or by columns: 

12 Multiply A times x to find three components of Ax : 

[ ~1 001 00

1

] [;z] [2 1 3] [ 1] [2 1] and ~;! _: and ~; [:l 
13 (a) A matrix with m rows and n columns multiplies a vector with compo-

nents to produce a vector with components. 

(b) The planes from the m equations Ax = b are in -dimensional space. 
The combination of the columns of A is in -dimensional space. 
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14 Write 2x + 3 y + z + St = 8 as a matrix A (how many rows?) multiplying the column 
vector x = (x, y, z, t) to produce b. The solutions x fill a plane or "hyperplane" 
in 4-dimensional space. The plane is 3-dimensional with no 4D volume. 

Problems 15-22 ask for matrices that act in special ways on vectors. 

15 (a) What is the 2 by 2 identity matrix? I times [~] equals [~]. 

(b) What is the 2 by 2 exchange matrix? P times [;] equals [~]. 

16 ( a) What 2 by 2 matrix R rotates every vector by 90°? R times [~] is [-i]. 
(b) What 2 by 2 matrix R2 rotates every vector by 180°? 

17 Find the matrix P that multiplies (x, y, z) to give (y, z, x). Find the matrix Q that 
multiplies (y, z, x) to bring back (x, y, z). 

18 What 2 by 2 matrix E subtracts the first component from the second component? 
What 3 by 3 matrix does the same? 

and 

19 What 3 by 3 matrix E multiplies (x, y, z) to give (x, y, z + x)? What matrix E-1 

mUltiplies (x, y, z) to give (x, y, z - x)? If you mUltiply (3,4,5) by E and then 
multiply by E- I , the two results are ( ) and ( ). 

20 What 2 by 2 matrix PI projects the vector (x, y) onto the x axis to produce (x, O)? 
What matrix P2 projects onto the y axis to produce (0, y)? If you multiply (5, 7) 
by PI and then multiply by P2 , you get ( ) and ( ). 

21 What 2 by 2 matrix R rotates every vector through 45°? The vector (1,0) goes to 
(..fi/2, ..fi/2). The vector (0, 1) goes to (-..fi/2, ..fi/2). Those determine the 
matrix. Draw these particular vectors in the xy plane and find R. 

, 
22 Write the dot product of (1,4,5) and (x, y, z) as a matrix multiplication Ax. The 

matrix A has one row. The solutions to Ax = 0 lie on a perpendicular to the 
vector . The columns of A are only in -dimensional space. 

23 In MATLAB notation, write the commands that define this matrix A and the column 
vectors x and h. What command would test whether or not Ax = b? 

A = [~ ~] b = [~] 

24 The MATLAB commands A = eye(3) and v = [3: 5 J' produce the 3 by 3 identity 
matrix and the column vector (3,4,5). What are the outputs from A*v and v' *v? 
(Computer not needed!) If you ask for v*A, what happens? 
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25 If you multiply the 4 by 4 all-ones matrix A = ones(4) and the column v = ones(4,1), 
what is A*v? (Computer not needed.) If you multiply B = eye(4) + ones(4) times 
w = zeros(4,1) + 2*ones(4,1), what is B*w? 

Questions 26-28 review the row and column pictures in 2, 3, and 4 dimensions. 

26 Draw the row and column pictures for the equations x - 2y = 0, x + y = 6. 

27 For two linear equations in three unknowns x, y, Z, the row picture will show (2 or 3) 
(lines or planes) in (2 or 3)-dimensional space. The column picture is in (2 or 3)­
dimensional space. The solutions normally lie on a __ 

28 For four linear equations in two unknowns x and y, the row picture shows four 
__ . The column picture is in -dimensional space. The equations have no 
solution unless the vector on the right side is a combination of __ 

29 Start with the vector Uo = (1,0). Multiply again and again by the same "Markov 
matrix" A = [.8.3; .2.7]. The next three vectors are UI, U2, U3: 

UI = [.8 .3] [1] = [.8] U2 = AUI = _ 
.2 .7 ° .2 

What property do you notice for all four vectors uo, U 1, U 2, U 3 ? 

Challenge Problems 

30 Continue Problem 29 from Uo = (1,0) to U7, and also from Vo = (0,1) to V7. 

What do you notice about U7 and V7? Here are two MATLAB codes, with while and 
for. They plot Uo to U7 and Vo to V7. You can use other languages: 

u = [1 ; 0]; A = [.8 .3 ; .2 .7]; 
x = u; k = [0 : 7]; 
while size(x,2) <= 7 

u = A*u; x = [x u]; , 
end 
plot(k, x) 

v = [0; 1]; A = [.8.3;.2.7]; 
x = v; k = [0 : 7]; 
for j = 1 : 7 

v = A*v; x = [x v]; 
end 
plot(k, x) 

The u's and v's are approaching a steady state vector s. Guess that vector and check 
that As = s. If you start with s, you stay with s. 

31 Invent a 3 by 3 magic matrix M3 with entries 1,2, ... ,9. All rows and columns 
and diagonals add to 15. The first row could be 8,3,4. What is M3 times (1,1, I)? 
What is M4 times (1, 1, 1. 1) if a 4 by 4 magic matrix has entries 1, ... , 16? 

32 Suppose U and v are the first two columns of a 3 by 3 matrix A. Which third columns 
w would make this matrix singular? Describe a typical column picture of Ax = b 
in that singular case, and a typical row picture (for a random b). 
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33 Multiplying by A is a "linear transformation". Those important words mean: 

If w is a combination of u and v, then Aw is the same combination of All and Av. 

It is this "linearity" A w = e Au + dAv that gives us the name linear algebra. 

Problem: If u = [ ~ ] and v = [ ~ ] then Au and Av are the columns of A. 

Combine w = eu + dv. If w = [ ; ] how is Aw connected to Au and Av? 

34 Start from the four equations -Xi+l + 2Xi - Xi-l = i (for i = 1,2,3,4 with 
Xo = Xs = 0). Write those equations in their matrix form Ax = h. Can you solve 
them for Xl, X2, X3, X4? 

35 A 9 by 9 Sudoku matrix S has the numbers I, ... , 9 in every row and column, and 
in every 3 by 3 block. For the all-ones vector x = (1, ... , I), what is Sx? 

A better question is: Which row exchanges will produce another Sudoku matrix? 
Also, which exchanges of block rows give another Sudoku matrix? 

Section 2.7 will look at all possible permutations (reorderings) of the rows. I can see 
6 orders for the first 3 rows, all giving Sudoku matrices. Also 6 permutations of the 
next 3 rows, and of the last 3 rows. And 6 block permutations of the block rows? 
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2.2 The Idea of Elimination 

This chapter explains a systematic way to solve linear equations. The method is called 
"elimination", and you can see it immediately in our 2 by 2 example. Before elimination, 
x and y appear in both equations. After elimination, the first unknown x has disappeared 
from the second equation 8y = 8: 

Before x - 2 Y = 1 
3x + 2y = 11 After~ ! (multiply equation 1 by 3) 

(subtract to eliminate 3x) 

The new equation 8 y = 8 instantly gives y = 1. Substituting y = 1 back into the first 
equation leaves x - 2 = 1. Therefore x = 3 and the solution (x, y) = (3, 1) is complete. 

Elimination produces an upper triangular system-this is the goal. The nonzero 
coefficients 1, -2, 8 form a triangle. That system is solved from the bottom upwards­
first y = 1 and then x = 3. This quick process is called back substitution. It is used for 
upper triangular systems of any size, after elimination gives a triangle. 

Important point: The original equations have the same solution x = 3 and y = 1. 
Figure 2.5 shows each system as a pair of lines, intersecting at the solution point (3,1). 
After elimination, the lines still meet at the same point. Every step worked with correct 
equations. 

How did we get from the first pair of lines to the second pair? We subtracted 3 times 
the first equation from the second equation. The step that eliminates x from equation 2 is 
the fundamental operation in this chapter. We use it so often that we look at it closely: 

To eliminate x: Subtract a multiple of equation 1 from equation 2. 

Three times x - 2y = 1 gives 3x - 6y = 3. When this is subtracted from 3x + 2y = II, 
the right side becomes 8. The main point is that 3x cancels 3x. What remains on the left 
side is 2y - (-6y) or 8y, and x is eliminated. The system became triangular. 

Ask yourself how that multiplier.e = 3 was found. The first equation contains Ix. 
So the first pivot was I (the coefficient of x). The second equation contains 3x, so the 
multiplier was 3. Then subtraction 3x - 3x produced the zero and the triangle. 

y y 
3x + 2y = 11 After elimination 

1 
8y= 8 Before elimination 

--;---~~-----r----~---~~X --;---~~-----r----~--~~X 

2 3 2 3 

Figure 2.5: Eliminating x makes the second line horizontal. Then 8 y = 8 gives y = 1. 
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You will see the multiplier rule if I change the first equation to 4x - 8y = 4. (Same 
straight line but the first pivot becomes 4.) The correct multiplier is now l = ~. To find the 
multiplier, divide the coefficient" 3" to be eliminated by the pivot" 4" : 

4x - 8y = 4 Multiply equation 1 by ~ ~ = 4 
3x + 2y = 11 Subtract from equation 2 8y = 8. 

The final system is triangular and the last equation still gives y = 1. Back substitution 
produces 4x - 8 = 4 and 4x = 12 and x = 3. We changed the numbers but not the lines 
or the solution. Divide by the pivot to find that multiplier.e = ~: 

Pivot flrst",~nz~rointh(!rowthatdoes· the "elimination '. 
.... 'htll!ltipliet ... (e.n~tf)elimi",ate)9ivid~d:lJy(pivotJ. '" ...... ·i~.· 

The new second equation starts with the second pivot, which is 8. We would use it to 
eliminate y from the third equation if there were one. To solve n equations we want n 
pivots. The pivots are on the diagonal of the triangle after elimination. 

You could have solved those equations for x and y without reading this book. It is an 
extremely humble problem, but we stay with it a little longer. Even for a 2 by 2 system, 
elimination might break down. By understanding the possible breakdown (when we can't 
find a full set of pivots), you will understand the whole process of elimination. 

Breakdown of Elimination 

Normally, elimination produces the pivots that take us to the solution. But failure is possi­
ble. At some point, the method might ask us to divide by zero. We can't do it. The process 
has to stop. There might be a way to adjust and continue-or failure may be unavoidable. 

Example 1 fails with no solution to Oy = 8. Example 2 fails with too many solutions to 
Oy = O. Example 3 succeeds by exchanging the equations. 

Example 1 Permanentfailure with no solution. Elimination makes this clear: 

x - 2y = 1 Subtract 3 times 
3x - 6 Y = 11 eqn. 1 from eqn. 2 

" 

f.i~~ ••••... ··'J.·' 
J)y·.·.· .. · .. 8. 

There is no solution to Oy = 8. Normally we divide the right side 8 by the second pivot, 
but this system has no second pivot. (Zero is never allowed as a pivot/) The row and 
column pictures in Figure 2.6 show why failure was unavoidable. If there is no solution, 
elimination will discover that fact by reaching an equation like Oy = 8. 

The row picture of failure shows parallel lines-which never meet. A solution must lie 
on both lines. With no meeting point, the equations have no solution. 

The column picture shows the two columns (1,3) and (-2, -6) in the same direction. 
All combinations of the columns lie along a line. But the column from the right side is in 
a different direction (1, 11). No combination of the columns can produce this right side­
therefore no solution. 

When we change the right side to (1, 3), failure shows as a whole line of solution points. 
Instead of no solution, next comes Example 2 with infinitely many. 
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y 

x- 2y= 1 

+---+----:;;J"'~x 

first [1] 
column 3 

Columns don't combine to give b = [I! ] 

second 
column 

Figure 2.6: Row picture and column picture for Example 1: no solution. 

Example 2 Failure with infinitely many solutions. Change b = (1,11) to (1,3). 

x - 2y = 1 

3x - 6y = 3 

Subtract 3 times 
eqn. 1 from eqn. 2 

·&~Y'l····· 
Oy.··.··O. 

Still only 
one pivot. 

47 

Every y satisfies Oy = O. There is really only one equation x - 2y = 1. The unknown y 
is "free". After y is freely chosen, x is determined as x = 1 + 2y. 

In the row picture, the parallel lines have become the same line. Every point on that 
line satisfies both equations. We have a whole line of solutions in Figure 2.7. 

In the column picture, b = (1, 3) is now the same as column 1. So we can choose 
x = 1 and y = O. We can also choose x = 0 and y = -!; column 2 times -! equals b. 
Every (x, y) that solves the row problem also solves the column problem. 

Failure For n equations we do not get n pivots 

Elimination leads to an equation 0 =/:- 0 (no solution) or 0 = 0 (many solutions) 

Success comes with 11 pivots. But we may have to exchange the n equations. 

Elimination can go wrong'in a third way-but this time it can be fixed. Suppose the first 
pivot position contains zero. We refuse to allow zero as a pivot. When the first equation 
has no term involving x, we can exchange it with an equation below: 

Example 3 Temporary failure (zero in pivot). A row exchange produces two pivots: 

Permutation 
Ox +2y = 4 

3x - 2y = 5 

Exchange the 
two equations 

·3,i .. ··;'2Y .. ·.··.S···· 
,-.. "'., 

··'~y:·;·4. 

The new system is already triangular. This small example is ready for back substitution. 
The last equation gives y = 2, and then the first equation gives x = 3. The row picture is 
normal (two intersecting lines). The column picture is also normal (column vectors not in 
the same direction). The pivots 3 and 2 are normal-but a row exchange was required. 
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y 

right hand side [~ ] 
lies on the line of columns 

--+---"""""'"---+----+---~x 

Same line from both equations 
Solutions all along this line 

!(second column) = - [~J 

Figure 2.7: Rowand column pictures for Example 2: infinitely many solutions. 

Examples 1 and 2 are singular-there is no second pivot. Example 3 is nonsingular­
there is a full set of pivots and exactly one solution. Singular equations have no solution or 
infinitely many solutions. Pivots must be nonzero because we have to divide by them. 

Three Equations in Three Unknowns 

To understand Gaussian elimination, you have to go beyond 2 by 2 systems. Three by three 
is enough to see the pattern. For now the matrices are square-an equal number of rows 
and columns. Here is a 3 by 3 system, specially constructed so that all steps lead to whole 
numbers and not fractions: 

2x + 4y -2z = 2 

4x + 9y - 3z = 8 (1) 

-2x - 3y + 7z = 10 

What are the steps? The first pivot is the boldface 2 (upper left). Below that pivot we want 
to eliminate the 4. The first multiplier is the ratio 4/2 = 2. Multiply the pivot equation by 
.e21 = 2 and subtract. Subtraction removes the 4x from the second equation: 

Step 1 Subtract 2 times equation 1 from equation 2. This leaves y + z = 4. 

We also eliminate -2x from equation 3-still using the first pivot. The quick way is to add 
equation 1 to equation 3. Then 2x cancels -2x. We do exactly that, but the rule in this book 
is to subtract rather than add. The systematic pattern has multiplier .e31 = -2/2 = -1. 
Subtracting -1 times an equation is the same as adding: 

Step 2 Subtract -1 times equation 1 from equation 3. This leaves y + Sz = 12. 

The two new equations involve only y and z. The second pivot (in boldface) is 1: 

x is eliminated 
ly + lz = 4 
ly + Sz = 12 

We have reached a 2 by 2 system. The final step eliminates y to make it 1 by 1: 
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Step 3 Subtract equation 2new from 3new. The multiplier is 1/1 = 1. Then 4z = 8. 

The original Ax = b has been converted into an upper triangular U x = c: 

2x + 4y - 2z = 2 

4x + 9y - 3z = 8 

. -2x - 3y + 7z = 10 

(2) 

The goal is achieved-forward elimination is complete from A to U. Notice the pivots 
2, 1,4 along the diagonal of U. The pivots 1 and 4 were hidden in the original system. 
Elimination brought them out. U x = c is ready for back substitution, which is quick: 

(4z = 8 gives z = 2) (y + z = 4 gives y = 2) (equation 1 gives x = -1) 

The solution is (x,y,z) = (-1,2,2). The row picture has three planes from three equa­
tions. All the planes go through this solution. The original planes are sloping, but the last 
plane 4z = 8 after elimination is horizontal. 

The column picture shows a combination Ax of column vectors producing the right 
side b. The coefficients in that combination are -1,2,2 (the solution): 

Ax = (-1) U] +2 U] +2 [ =n equals U] = h. (3) 

The numbers x, y, z multiply columns 1, 2, 3 in Ax = b and also in the triangular U x = c. 
For a 4 by 4 problem, or an n by n problem, elimination proceeds the same way. Here 

is the whole idea, column by column from A to U, when elimination succeeds. 

Column 1. Use the first equation to create zeros below the first pivot. 

Column 2. Use the new equation 2 to create zeros below the second pivot. 

Columns 3 to n. Keep going to find all n pivots and the triangular U. 

x x x x 

After column 2 we have 
o x x x 
o 0 x x 
o 0 x x 

. We want 

x x x x 
x x x 

x x 
x 

(4) 

The result of forward elimination is an upper triangular system. It is nonsingular if there 
is a full set of n pivots (never zero!). Question: Which x on the left could be changed 
to boldface x because the pivot is known? Here is a final example to show the original 
Ax = b, the triangular system U x = c, and the solution (x, y, z) from back substitution: 

x+ y+ z=6 x+y+z=6 

x + 2y + 2z = 9 Forward y + z = 3 

x + 2y + 3z = 10 Forward z = 1 

Back 

Back 

All multipliers are 1. All pivots are 1. All planes meet at the solution (3, 2,1). The columns 
of A combine with 3, 2,1 to give b = (6,9,10). The triangle shows U x = c = (6,3, 1). 
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• REVIEW OF THE KEY IDEAS • 

1. A linear system (Ax = b) becomes upper triangular (U x = c) after elimination. 

2. We subtract £ij times equation j from equation i, to make the (i, j) entry zero. 

. .. entry to eliminate in row i . 
3. The multlpher IS £ij = pivot in row j . PIvotS can not be zero! 

4. A zero in the pivot position can be repaired if there is a nonzero below it. 

5. The upper triangular system is solved by back substitution (starting at the bottom). 

6. When breakdown is permanent, the system has no solution or infinitely many. 

• WORKED EXAMPLES • 

2.2 A When elimination is applied to this matrix A, what are the first and second pivots? 
What is the mUltiplier £21 in the first step (£21 times row 1 is subtracted from row 2)? 

A has afirst difference in row 1 and a second difference -1,2, -1 in row 2. 

[ 

1 -1 0] [1-1 
A = -1 2 -1 -+ 0 1 

o -1 2 0 -1 

o ] [1 -1 -1 -+ U = 0 1 
200 -no 

What entry in the 2,2 position (instead of 2) would force an exchange of rows 2 and 3? 
Why is the lower left multiplier £31 = 0, subtracting zero times row 1 from row 3? 
If you change the corner entry from a33 = 2 to a33 = 1, why does elimination fail? 

Solution The first pivot is 1. The multiplier £21 is -1/1 = -1. When -1 times row 1 
is subtracted (so row 1 is added to row 2), the second pivot is revealed as 1. 

If we reduce the middle entry "2" to "1", that would force a row exchange. (Zero will 
appear in the second pivot position.) The multiplier £31 is zero because a31 = O. A zero at 
the start of a row needs no elimination. This A is a "band matrix". 

The last pivot is 1. So if the original comer entry a33 is reduced by 1 (to a33 = 1), 
elimination would produce O. No third pivot, elimination fails. 

2.2 B Suppose A is already a triangular matrix (upper triangular or lower triangular). 
Where do you see its pivots? When does Ax = b have exactly one solution for every b? 

Solution The pivots of a triangular matrix are already set along the main diagonal. Elim­
ination succeeds when all those numbers are nonzero. Use back substitution when A is 
upper triangular, go forward when A is lower triangular. 



2.2. The Idea of Elimination 51 

2.2 C Use elimination to reach upper triangular matrices U. Solve by back substitution 
or explain why this is impossible. What are the pivots (never zero)? Exchange equations 
when necessary. The only difference is the -x in the last equation. 

Success 
then 

Failure 

x+y+z=7 
x+y-z=5 
x-y+z=3 

x+y+z=7 
x+y-z=5 

-x - y + z = 3 

Solution For the first system, subtract equation 1 from equations 2 and 3 (the multipliers 
are £21 = 1 and £31 = 1). The 2,2 entry becomes zero, so exchange equations: 

x+y+z= 7 
Success o y - 2z = -2 exchanges into 

x+y+z= 7 
-2y +Oz =-4 

-2y + Oz =-4 -2z =-2 

Then back substitution gives z = 1 and y = 2 and x = 4. The pivots are 1, -2, -2. 
For the second system, subtract equation 1 from equation 2 as before. Add equation I 

to equation 3. This leaves zero in the 2, 2 entry and also below: 

Failure 
x+y+z= 7 

Oy - 2z =-2 
Oy + 2z = 10 

There is no pivot in column 2 (it was - column 1) 
A further elimination step gives Oz = 8 
The three planes don't meet 

Plane 1 meets plane 2 in a line. Plane 1 meets plane 3 in a parallel line. No solution. 
If we change the "3" in the original third equation to "-5" then elimination would lead 

to 0 = O. There are infinitely many solutions! The three planes now meet along a whole line. 
Changing 3 to -5 moved the third plane to meet the other two. The second equation 

gives z = 1. Then the first equation leaves x + y = 6. No pivot in column 2 makes y 
free (it can have any value). Then x = 6 - y. 

Problem Set 2.2 

Problems 1-10 are about elimination on 2 by 2 systems. 

1 What multiple £21 of equation 1 should be subtracted from equation 2? 

2x + 3y = 1 

lOx + 9y = 11. 

After this elimination step, write down the upper triangular system and circle the two 
pivots. The numbers 1 and 11 have no influence on those pivots. 

2 Solve the triangular system of Problem 1 by back substitution, y before x. Verify 
that x times (2, 10) plus y times (3,9) equals (1, 11). If the right side changes to 
(4,44), what is the new solution? 
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3 What multiple of equation 1 should be subtracted from equation 2? 

2x -4y = 6 

-x + Sy = O. 

After this elimination step, solve the triangular system. If the right side changes to 
(-6,0), what is the new solution? 

4 What multiple .e of equation 1 should be subtracted from equation 2 to remove e? 

ax +by = f 
ex + dy = g. 

The first pivot is a (assumed nonzero). Elimination produces what formula for the 
second pivot? What is y? The second pivot is missing when ad = be: singular. 

5 Choose a right side which gives no solution and another right side which gives in­
finitely many solutions. What are two of those solutions? 

Singular system 3x + 2y = 10 
6x + 4y = 

6 Choose a coefficient b that makes this system singular. Then choose a right side g 
that makes it solvable. Find two solutions in that singular case. 

2x + by = 16 

4x + 8y = g. 

7 For which numbers a does elimination break down (1) permanently (2) temporarily? 

ax + 3y =-3 

4x + 6y = 6. 

Solve for x and y after fixing the temporary breakdown by a row exchange. 

S For which three numbers k does elimination break down? Which is fixed by a row 
exchange? In each case, is the number of solutions 0 or 1 or oo? 

" 

kx + 3y = 6 

3x +ky = -6. 

9 What test on bi and b2 decides whether these two equations allow a solution? How 
many solutions will they have? Draw the column picture for b = (1,2) and (1,0). 

3x - 2y = b i 

6x - 4y = b2 • 

10 In the xy plane, draw the lines x + y = 5 and x + 2y = 6 and the equation 
y = that comes from elimination. The line Sx - 4y = e will go through the 
solution of these equations if c = __ 
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Problems 11-20 study elimination on 3 by 3 systems (and possible failure). 

11 (Recommended) A system of linear equations can't have exactly two solutions. Why? 

(a) If (x, y, z) and (X, Y, Z) are two solutions, what is another solution? 

(b) If 25 planes meet at two points, where else do they meet? 

12 Reduce this system to upper triangular form by two row operations: 

2x + 3y + z = 8 

4x + 7y + 5z = 20 

-2y +2z = O. 

Circle the pivots. Solve by back substitution for z, y, x. 

13 Apply elimination (circle the pivots) and back substitution to solve 

2x-3y = 3 

4x -5y + z = 7 

2x - y - 3z = 5. 

List the three row operations: Subtract __ times row __ from row __ 
d 

14 Which number d forces a row exchange, and what is the triangular system (not sin-
gular) for that d? Which d makes this system singular (no third pivot)? 

2x + 5y + z = 0 

4x + dy + z = 2 

y -z = 3. 

15 Which number b leads later to a row exchange? Which b leads to a missing pivot? 
In that singular case find a nonzero solution x, y, z. 

x +by = 0 

x -2y -z = 0 

y + z = O. 

16 (a) Construct a 3 by 3 system that needs two row exchanges to reach a triangular 
form and a solution. 

(b) Construct a 3 by 3 system that needs a row exchange to keep going, but breaks 
down later. 

17 If rows 1 and 2 are the same, how far can you get with elimination (allowing row 
exchange)? If columns 1 and 2 are the same, which pivot is missing? 

Equal 2x - y + z = 0 
rows 2x - y + z = 0 

4x + y + z = 2 

2x + 2y + z = 0 
4x + 4y + z = 0 
6x + 6y + z = 2. 

Equal 
columns 
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18 Construct a 3 by 3 example that has 9 different coefficients on the left side, but 
rows 2 and 3 become zero in elimination. How many solutions to your system with 
b = (1, 10, 100) and how many with b = (0,0, O)? 

19 Which number q makes this system singular and which right side t gives it infinitely 
many solutions? Find the solution that has z = 1. 

x + 4y - 2z = 1 

x + 7y -6z = 6 

3y + qz = t. 

20 Three planes can fail to have an intersection point, even if no planes are parallel. The 
system is singular if row 3 of A is a of the first two rows. Find a third equation 
that can't be solved together with x + y + z = 0 and x - 2y - z = 1. 

21 Find the pivots and the solution for both systems (Ax = band Kx = b): 

2x+ Y =0 2x- y =0 

x+2y+ z =0 -x +2y- z =0 

y +2z + t=O y +2z- t =0 

z +2t = 5 - z + 2t = 5. 

22 If you extend Problem 21 following the 1,2, 1 pattern or the -1,2, -1 pattern, what 
is the fifth pivot? What is the nth pivot? K is my favorite matrix. 

23 If elimination leads to x + y = 1 and 2y = 3, find three possible original problems. 

24 For which two numbers a will elimination fail on A = [:;]? 

25 For which three numbers a will elimination fail to give three pivots? 

26 

[

a 2 3] 
A = a a 4 is singular for three values of a. 

a a a 

Look for a matrix that has row sums 4 and 8, and column sums 2 and s: 
" 

M . [a b] . atnx = c d 
a+b=4 a+c=2 
c+d=8 b+d=s 

The four equations are solvable only if s = . Then find two different matrices 
that have the correct row and column sums. Extra credit: Write down the 4 by 4 
system Ax = b with x = (a, b, c, d) and make A triangular by elimination. 

27 Elimination in the usual order gives what matrix U and what solution to this "lower 
triangular" system? We are really solving by forward substitution: 

3x = 3 
6x +2y = 8 
9x -2y + z = 9. 
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28 Create a MATLAB command A(2, : ) = . " for the new row 2, to subtract 3 times row 
1 from the existing row 2 if the matrix A is already known. 

Challenge Problems 

29 Find experimentally the average 1 st and 2nd and 3rd pivot sizes from MATLAB 's 
[L, U] = lu(rand(3)). The average size abs(U(l, 1)) is above! because lu picks 
the largest available pivot in column 1. Here A = rand(3) has random entries 
between 0 and 1. 

30 If the last comer entry is A(5, 5) = 11 and the last pivot of A is U(5, 5) = 4, what 
different entry A(5, 5) would have made A singular? 

31 Suppose elimination takes A to U without row exchanges. Then row j of U is a 
combination of which rows of A? If Ax = 0, is U x = O? If Ax = b, is U x = b? 
If A starts out lower triangular, what is the upper triangular U? 

32 Start with 100 equations Ax = 0 for 100 unknowns x = (Xl, ... ,XlOO). Suppose 
elimination reduces the 100th equation to 0 = 0, so the system is "singular". 

(a) Elimination takes linear combinations of the rows. So this singular system has 
the singular property: Some linear combination of the 100 rows is __ 

(b) Singular systems Ax = 0 have infinitely many solutions. This means that some 
linear combination of the 100 columns is __ 

(c) Invent a 100 by 100 singular matrix with no zero entries. 

(d) For your matrix, describe in words the row picture and the column picture of 
Ax = O. Not necessary to draw 100-dimensional space. 
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2.3 Elimination Using Matrices 

We now combine two ideas--elimination and matrices. The goal is to express all the steps 
of elimination (and the final result) in the clearest possible way. In a 3 by 3 example, 
elimination could be described in words. For larger systems, a long list of steps would be 
hopeless. You will see how to subtract a multiple of row j from row i-using a matrix E. 

The 3 by 3 example in the previous section has the beautifully short form Ax = b: 

2XI + 4X2 - 2X3 = 2 [2 4 -2] [Xl] [2] 
4Xl + 9X2 - 3X3 = 8 is the same as 4 9 -3 X2 8. (1) 

-2Xl - 3X2 + 7X3 = 10 -2 -3 7 X3 10 

The nine numbers on the left go into the matrix A. That matrix not only sits beside x, it 
multiplies x. The rule for" A times x" is exactly chosen to yield the three equations. 

Review of A times x. A matrix times a vector gives a vector. The matrix is square when 
the number of equations (three) matches the number of unknowns (three). Our matrix is 
3 by 3. A general square matrix is n by n. Then the vector x is in n-dimensional space. 

The unknown in R3 U x = [~n and ~e solunon is x = n l 
Key point: Ax = b represents the row form and also the column form of the equations. 

Column form Ax = (-1) U] +2 [j] +2[ =n -U] =b. 

This rule for Ax is used so often that we express it once more for emphasis . 

. Ax, ··,tstl/Cjj,71t~i11rlltj(!lJf)ftlJ.ecqltl/11,it$·()rA.,.c:()fu.pOri~ntsYQfx mpltiplythci$¢¢oltlinns:, 

, Ax = Xl times (column 1) + ... + Xn times (column n). ' 

When we compute th~ components of Ax , we use the row form of matrix multiplica­
tion. The ith component is a dot product with row i of A, which is [ail ai2 .. , ain]. 
The short formula for that dot product with x uses "sigma notation". 

Components of Ax are dot products with rows of A. 

n 

T-I1eftb.6(;)ri1l?oh~nt~f\4.iis" ailxl + ai2X2 + ... + ainXn· ''l1lls1s' LaijXj' 
j=l 

The sigma symbol L is an instruction to add. I Start with j - 1 and stop with j = n. 
Start the sum with ailXl and stop with ainXn. That produces (row i) • x. 

1 Einstein shortened this even more by omitting the L. The repeated j in aU x j automatically meant addition. 

He also wrote the sum as a{ x j. Not being Einstein, we include the L. 
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One point to repeat about matrix notation: The entry in row 1, column 1 (the top left 
comer) is all. The entry in row 1, column 3 is a13. The entry in row 3, column 1 is a31. 
(Row number comes before column number.) The word "entry" for a matrix corresponds 
to "component" for a vector. General rule: aU = A (i, j) is in row i, column j. 

Example 1 This matrix has aU = 2i + j. Then all = 3. Also a12 = 4 and a21 = 5. 
Here is Ax with numbers and letters: 

[3 4] [2] = [3.2+4.1] 
5 6 1 5·2+6·1 

The first component of Ax is 6 + 4 = 10. A row times a column gives a dot product. 

The Matrix Form of One Elimination Step 

Ax = b is a convenient form for the original equation. What about the elimination steps? 
The first step in this example subtracts 2 times the first equation from the second equation. 
On the right side, 2 times the first component of b is subtracted from the second component: 

First step b = U] changesto bMW = Ul 
We want to do that subtraction with a matrix! The same result bnew = Eb is achieved 
when we multiply an "elimination matrix" E times b. It subtracts 2b1 from b2 : 

Multiplication by E subtracts 2 times row 1 from row 2. Rows 1 and 3 stay the same: 

o 
1 
o 

The first and third rows of E are rows from the identity matrix I. The new second compo­
nent is the number 4 that appeared after the elimination step. This is b2 - 2b1• 

It is easy to describe the "elementary matrices" or "elimination matrices" like this E. 
Start with the identity matrix I. Change one of its zeros to the multiplier -.e: 

.'. Th~,.identii:?· .l1t~.has .•. l"'s':QI1.·.th¢diagqllat,.~p4 .. ()~et\Vis~ ••.• O'S. ; .• ·Then .··lb ..... ·· ..... · .... ·iib •..••• ·.fQrall.· •.. b •. 
'Tf.i~·l!~~tIi(?~t9q~tiixOl·diini~~'ti~nm4~· p;dthat·sJktt~¢.t~ .·~.IApttipl¢ ·~.9fr9~.i . 
. '1f(jj;ii t,QW;'i··'1i~~'tbe';*xtra . rtPIlzero.entn" ••• ····t4t;thei,)pdstti()n·lstil14i4g()n~ll's). 

C,_', " "", ' __ :,' :, ' :-.:. ',- •• ', ,!: ,",-, - ,',- ',-: - ,- :''''. ,., -" -', "',< ".",: . !:.':.:; .. ,'" .. , ,,-, .' '" «', ''''.-'':', .. ,~,' -,-" ,-, ' 
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Example 2 The matrix E31 has -.e in the 3, 1 position: 

[
1 0 0] 

Identity I = 0 1 0 
001 

Elimination E31 = [ ~ i ~]. 
-.e 0 1 

When you multiply I times b, you get b. But E31 subtracts.e times the first component 
from the third component. With.e = 4 this example gives 9 - 4 = 5: 

and Eb = [ ~ 
-4 

o 
1 
o 

What about the left side of Ax = b? Both sides are multiplied by E31. The purpose of 
E31 is to produce a zero in the (3,1) position of the matrix. 

The notation fits this purpose. Start with A. Apply E's to produce zeros below the 
pivots (the first E is E2d. End with a triangular U. We now look in detail at those steps. 

First a small point. The vector x stays the same. The solution is not changed by 
elimination. (That may be more than a small point.) It is the coefficient matrix that is 
changed. When we start with Ax = b and multiply by E, the result is EAx = Eb. 
The new matrix EA is the result of mUltiplying E times A. 

Confession The elimination matrices Eij are great examples, but you won't see them 
later. They show how a matrix acts on rows. By taking several elimination steps, we will 
see how to multiply matrices (and the order of the E's becomes important). Products and 
inverses are especially clear for E's. It is those two ideas that the book will now use. 

Matrix Multiplication 

The big question is: How do we multiply two matrices? When the first matrix is E, 
we already know what to expect for EA. This particular E subtracts 2 times row 1 from 
row 2 of this matrix A and any matrix. The multiplier is .e = 2: 

EA=H 
o 
1 
o 

~] [~ ~ =;] [~ ~ -~] (with the zero). 
1 -2 -3 7 -2 -3 7 

(2) 

This step does not change rows 1 and 3 of A. Those rows are unchanged in EA-only 
row 2 is different. Twice the first row has been subtracted from the second row. Matrix 
multiplication agrees with elimination-and the new system of equations is EAx = Eb. 

EAx is simple but it involves a subtle idea. Start with Ax = b. Multiplying both 
sides by E gives E(Ax) = Eb. With matrix multiplication, this is also (EA)x = Eb. 
The first was E times Ax, the second is EA times x. They are the same. Parentheses 
are not needed. We just write EAx. 

That rule extends to a matrix C with several column vectors like C = [ct C2 C3]' When 
multiplying EAC, you can do AC first or EA first. This is the point of an "associative 
law" like 3 x (4 x 5) = (3 x 4) x 5. Multiply 3 times 20, or mUltiply 12 times 5. Both 
answers are 60. That law seems so clear that it is hard to imagine it could be false. 
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The "commutative law" 3 x 4 = 4 x 3 looks even more obvious. But EA is usually 
different from A E. When E multiplies on the right, it acts on the columns of A. 

AsSQ¢i~tiY¢hhfi~try~····· .... 

··~PIDmqJ;lJi~~·;ii!~:i$CIijl$~S! 

There is another requirement on matrix multiplication. Suppose B has only one column 
(this column is h). The matrix-matrix law for EB should agree with the matrix-vector 
law for Eb. Even more, we should be able to multiply matrices EB a column at a time: 

If B has several columns hI, h2, h3, then the columns of EB are Ehl, Eh2, Eh3. 

'(3\ ",' :-1:, 

This holds true for the matrix multiplication in (2). If you multiply column 3 of A by 
E, you correctly get column 3 of EA: 

H ! n U] = n] E(columnj of A) =columnj of EA. 

This requirement deals with columns, while elimination is applied to rows. The next 
section describes each entry of every product AB. The beauty of matrix multiplication 
is that all three approaches (rows, columns, whole matrices) come out right. 

The Matrix P ij for a Row Exchange 

To subtract row j from row i we use Eij. To exchange or "permute" those rows we use 
another matrix Pij (a permutation matrix). A row exchange is needed when zero is in the 
pivot position. Lower down, that pivot column may contain a nonzero. By exchanging the 
two rows, we have a pivot and elimination goes forward. 

What matrix P23 exchanges row 2 with row 3? We can find it by exchanging rows of 
the identity matrix I : 

Permutation matrix [
1 0 0] 

P23 = 0 0 1 . 
010 

This is a row exchange matrix. Multiplying by P23 exchanges components 2 and 3 of any 
column vector. Therefore it also exchanges rows 2 and 3 of any matrix: 

[~ ~ !][n = m and U ~ !] [~ : n = [~ : il 
On the right, P23 is doing what it was created for. With zero in the second pivot position 
and "6" below it, the exchange puts 6 into the pivot. 
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Matrices act. They don't just sit there. We will soon meet other permutation matrices, 
which can change the order of several rows. Rows 1,2,3 can be moved to 3, 1,2. Our P23 
is one particular permutation matrix-it exchanges rows 2 and 3. 

To exchange equations 1 and 3 multiply by P13 = [g ~ ~]. 
100 

Usually row exchanges are not required. The odds are good that elimination uses only 
the Eij. But the Pij are ready if needed, to move a pivot up to the diagonal. 

The Augmented Matrix 

This book eventually goes far beyond elimination. Matrices have all kinds of practical 
applications, in which they are multiplied. Our best starting point was a square E times a 
square A, because we met this in elimination-and we know what answer to expect for EA. 
The next step is to allow a rectangular matrix. It still comes from our original equations, 
but now it includes the right side b. 

Key idea: Elimination does the same row operations to A and to b. We can include 
b as an extra column and follow it through elimination. The matrix A is enlarged or 
"augmented" by the extra column h: 

Elimination acts on whole rows of this matrix. The left side and right side are both mul­
tiplied by E, to subtract 2 times equation 1 from equation 2. With [A h] those steps 
happen together: 

H o 
1 
o 

0] [2 4 " o 4 9 
1 -2-3 

-2 
-3 

7 

2] [2 8 - 0 
10 -2 

4 -2 
1 1 

-3 7 
~] . 

10 

The new second row contains 0,1,1,4. The new second equation is X2 + X3 = 4. Matrix 
multiplication works by rows and at the same time by columns: 

ROWS Each row of E acts on [A h] to give a row of [EA Eb]. 

COLUMNS E acts on each column of [A h] to give a column of [EA Eh]. 

Notice again that word "acts." This is essential. Matrices do something! The matrix A 
acts on x to produce h. The matrix E operates on A to give EA. The whole process of 
elimination is a sequence of row operations, alias matrix multiplications. A goes to E21 A 
which goes to E31 E21 A. Finally E32E31 E21A is a triangular matrix. 
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The right side is included in the augmented matrix. The end result is a triangular system 
of equations. We stop for exercises on multiplication by E, before writing down the rules 
for all matrix multiplications (including block multiplication). 

• REVIEW OF THE KEY IDEAS • 

1. Ax = Xl times column 1 + ... + Xn times column n. And (AX)i = 2:1=1 aijXj. 

2. Identity matrix = I, elimination matrix = Eij using lij, exchange matrix = Pij. 

3. Multiplying Ax = b by E21 subtracts a multiple l21 of equation 1 from equation 2. 
The number -l21 is the (2, 1) entry of the elimination matrix E21. 

4. For the augmented matrix [A b], that elimination step gives [E21A E21b]' 

5. When A multiplies any matrix B, it multiplies each column of B separately. 

• WORKED EXAMPLES • 

2.3 A What 3 by 3 matrix E21 subtracts 4 times row 1 from row 2? What matrix P32 
exchanges row 2 and row 3? If you multiply A on the right instead of the left, describe the 
results AE21 and AP32. 

Solution By doing those operations on the identity matrix I, we find 

and 

Multiplying by E21 on the right side will subtract 4 times column 2 from column 1. 
Multiplying by P32 on the right will exchange columns 2 and 3. 

2.3 B Write down the augmented matrix [A b] with an extra column: 

X + 2y + 2z = I 
4x + 8y + 9z = 3 

3y + 2z = 1 

Apply E21 and then P32 to reach a triangular system. Solve by back substitution. What 
combined matrix P32 E21 will do both steps at once? 
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Solution E21 removes the 4 in column 1. But zero appears in column 2: 

[A b] = [! ~ ~ ;] 
032 1 

and 
[ 

1 2 2 
E2dA b] = 0 0 1 

032 -l ] 
Now P32 exchanges rows 2 and 3. Back substitution produces z then y and x. 

[ 
1 2 2 1] 

P32E2dA b]= 0 3 2 1 
o 0 1 -1 

and 

For the matrix P32 E21 that does both steps at once. apply P32 to E21 . 

One matrix 
Both steps P32 E21 = exchange the rows of E21 = [J ~ !]. 

2.3 C Multiply these matrices in two ways. First. rows of A times columns of B. 
Second, columns of A times rows of B. That unusual way produces two matrices that 
add to AB. How many separate ordinary multiplications are needed? 

Both ways [3 4] [10 16] 
AB = ~ ~ [~ :] = ~ : 

Solution Rows of A times columns of B are dot products of vectors: 

(row 1). (column 1) = [3 4] [~] = 10 is the (1, 1) entry of AB 

(row 2)· (column I) = [1 5] [~] = 7 is the (2, 1) entry of AB 

We need 6 dot products. 2 multiplications each. 12 in all (3·2·2). The same AB comes 
from columns of A times rows of B. A column times a row is a matrix. 
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Problem Set 2.3 

Problems 1-15 are about elimination matrices. 

1 Write down the 3 by 3 matrices that produce these elimination steps: 

(a) E21 subtracts 5 times row 1 from row 2. 

(b) E32 subtracts -7 times row 2 from row 3. 

(c) P exchanges rows 1 and 2, then rows 2 and 3. 

63 

2 In Problem 1, applying E21 and then E32 to b = (1,0,0) gives E32E21b = __ 
Applying E32 before E21 gives E21 E 32b . When E32 comes first, 
row feels no effect from row __ 

3 Which three matrices E21 , E 31 , E32 put A into triangular form U? 

A=[! 
-2 

1 
6 
2 

Multiply those E's to get one matrix M that does elimination: M A = U. 

4 Include b = (1,0,0) as a fourth column in Problem 3 to produce [A b]. Carry out 
the elimination steps on this augmented matrix to solve Ax = b. 

5 Suppose a33 = 7 and the third pivot is 5. If you change a33 to 11, the third pivot is 
__ . If you change a33 to , there is no third pivot. 

6 If every column of A is a mUltiple of (1,1,1), then Ax is always a multiple of 
(1,1,1). Do a 3 by 3 example. How many pivots are produced by elimination? 

7 Suppose E subtracts 7 times row 1 from row 3. 

(a) To invert that step you should __ 7 times row __ to row __ 
\ 

(b) What "inverse matrix" E-1 takes that reverse step (so E-l E = I)? 

(c) If the reverse step is applied first (and then E) show that E E -1 = I. 

8 The determinant of M = [~~] is det M = ad - bc. Subtract l times row 1 
from row 2 to produce a new M *. Show that det M * = det M for every .e. When 
l = cia, the product of pivots equals the determinant: (a)(d - lb) equals ad - bc. 

9 (a) E21 subtracts row 1 from row 2 and then P23 exchanges rows 2 and 3. What 
matrix M = P23E21 does both steps at once? 

(b) P23 exchanges rows 2 and 3 and then E31 subtracts row 1 from row 3. What 
matrix M = E31 P23 does both steps at once? Explain why the M's are the 
same but the E's are different. 
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10 (a) What 3 by 3 matrix E13 will add row 3 to row 1? 

(b) What matrix adds row 1 to row 3 and at the same time row 3 to row 1? 

(c) What matrix adds row 1 to row 3 and then adds row 3 to row 1? 

11 Create a matrix that has all = a22 = a 33 = 1 but elimination produces two negative 
pivots without row exchanges. (The first pivot is 1.) 

12 Multiply these matrices: 

[~ 
0 

~] [~ 
2 n [~ 

0 

~] [-: 0 n [: 2 !l 1 5 1 1 3 
0 8 0 -1 0 4 

13 Explain these facts. If the third column of B is all zero, the third column of EB is 
all zero (for any E). If the third row of B is all zero, the third row of EB might not 
be zero. 

14 This 4 by 4 matrix will need elimination matrices E21 and E32 and E43. What are 
those matrices? 

A= 

2 -1 0 0 
-1 2 -1 0 
o -1 2-1 
o 0 -1 2 

15 Write down the 3 by 3 matrix that has aij = 2i - 3j. This matrix has a32 = 0, but 
elimination still needs E32 to produce a zero in the 3,2 position. Which previous 
step destroys the original zero and what is E32? 

Problems 16-23 are about creating and multiplying matrices. 

16 Write these ancient problems in a 2 by 2 matrix form Ax = h and solve them: 

(a) X is twice as 'old as Y and their ages add to 33. 

(b) (x, y) = (2,5) and (3,7) lie on the line y = mx + c. Find m and c. 

17 The parabola y = a + bx + cx2 goes through the points (x, y) = (1,4) and (2,8) 
and (3, 14). Find and solve a matrix equation for the unknowns (a, b, c). 

18 Multiply these matrices in the orders EF and FE: 

[
1 0 0] 

E = a 1 0 
b 0 I 

o 0] 
1 0 . 
c 1 

Also compute E2 = EE and F3 = FFF. You can guess FIOO. 
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19 Multiply these row exchange matrices in the orders PQ and QP and p 2 : 

[
0 1 0] 

P = 1 0 0 
o 0 1 [

0 0 1] 
and Q = 0 1 0 . 

1 0 0 

Find another non-diagonal matrix whose square is M2 = I. 

20 (a) Suppose all columns of B are the same. Then all columns of EB are the same, 
because each one is E times __ 

(b) Suppose all rows of Bare [1 2 4]. Show by example that all rows of EB are 
not [1 2 4]. It is true that those rows are __ 

21 If E adds row 1 to row 2 and F adds row 2 to row 1, does EF equal FE? 

22 The entries of A and x are aij and x j. So the first component of Ax is La Ij x j = 
a11Xl + ... + alnXn . If E21 subtracts row 1 from row 2, write a formula for 

(a) the third component of Ax 

(b) the (2, 1) entry of E2lA 

(c) the (2, 1) entry of E2l (E2lA) 

(d) the first component of E21 Ax . 

23 The elimination matrix E = [_~ 1] subtracts 2 times row 1 of A from row 2 of A. 
The result is EA. What is the effect of E(EA)? In the opposite order AE, we are 
subtracting 2 times of A from . (Do examples.) 

Problems 24-27 include the column b in the augmented matrix [A b]. 

24 Apply elimination to the 2 by 3 augmented matrix [A b]. What is the triangular 
system U x = c? What is the solution x? 

25 Apply elimination to th~ 3 by 4 augmented matrix [A b]. How do you know this 
system has no solution? Change the last number 6 so there is a solution. 

26 The equations Ax = b and Ax * b * have the same matrix A. What double 
augmented matrix should you use in elimination to solve both equations at once? 

Solve both of these equations by working on a 2 by 4 matrix: 
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27 Choose the numbers a, b, c, d in this augmented matrix so that there is (a) no solution 
(b) infinitely many solutions. 

[A b] = [~ ~ ; ~] 
o 0 d c 

Which of the numbers a, b, c, or d have no effect on the solvability? 

28 If AB = 1 and Be = 1 use the associative law to prove A = C. 

Challenge Problems 

29 Find the triangular matrix E that reduces "Pascal's matrix" to a smaller Pascal: 

1 0 0 0 1 0 0 0 

Eliminate column 1 E 
1 1 0 0 0 1 0 0 
1 2 1 0 0 I 1 0 
1 3 3 1 0 1 2 1 

Which matrix M (mUltiplying several E's) reduces Pascal all the way to 
Pascal's triangular matrix is exceptional, all of its multipliers are'€ij = 1. 

30 Write M = [~~] as a product of many factors A = un and B = [A U. 

1? 

(a) What matrix E subtracts row 1 from row 2 to make row 2 of EM smaller? 

(b) What matrix F subtracts row 2 of EM from row 1 to reduce row 1 of FE M? 

(c) Continue E's and F's until (many E's and F's) times (M) is (A or B). 

(d) E and F are the inverses of A and B! Moving all E's and F's to the right side 
will give you the desired result M = product of A's and B's. 

This is possible for integer matrices M = [~ ~] > 0 that have ad - bc = 1. 

31 Find elimination Ipatrices E21 then E32 then E43 to change K into U: 

2 -1 
-1 2 
o -1 
o 0 

o 0 
-1 0 

2 -1 
-1 2 

2 -1 
o 3/2 
o 0 
o 0 

o 
-1 

4/3 
o 

o 
o 

-1 
5/4 

Apply those three steps to the identity matrix I, to multiply E 43E 32 E 21. 
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2.4 Rules for Matrix Operations 

I will start with basic facts. A matrix is a rectangular array of numbers or "entries". When 
A has m rows and n columns, it is an "m by n" matrix. Matrices can be added if their 
shapes are the same. They can be multiplied by any constant c. Here are examples of 
A + Band 2A, for 3 by 2 matrices: 

Matrices are added exactly as vectors are-one entry at a time. We could even regard a 
column vector as a matrix with only one column (so n = 1). The matrix -A comes from 
multiplication by c = -1 (reversing all the signs). Adding A to - A leaves the zero matrix, 
with all entries zero. All this is only common sense. 

The entry in row i and column j is called aU or A(i, j). The n entries along the first 
row are all, a12, . .. , ain. The lower left entry in the matrix is amI and the lower right is 
amn . The row number i goes from 1 to m. The column number j goes from 1 to n. 

Matrix addition is easy. The serious question is matrix multiplication. When can we 
multiply A times B, and what is the product AB? We cannot multiply when A and Bare 
3 by 2. They don't pass the following test: 

To multiply A B : If A has n columns, B must have n rows. 

When A is 3 by 2, the matrix B can be 2 by 1 (a vector) or 2 by 2 (square) or 2 by 20. 
Every column of B is multiplied by A. I will begin matrix multiplication the dot product 
way, and then return to this column way: A times columns of B. The most important rule 
is that A B times C equals A times Be. A Challenge Problem will prove this. 

Suppose A is m by nand B is n by p. We can multiply. The product AB is m by p. 

(m x n)(/1 x p) = (m x p) [ 
m rows ] [ n rows] [m rows ] 

n columns p columns - p columns . 

A row times a column is an extreme case. Then 1 by 11 mUltiplies 11 by 1. The result is 1 
by 1. That single number is the "dot product". 

In every case A B is filled with dot products. For the top comer, the (1, 1) entry of A B 
is (row 1 of A) • (column 1 of B). To mUltiply matrices, take the dot product of each row 
of A with each column of B. 

Figure 2.8 picks out the second row (i = 2) of a 4 by 5 matrix A. It picks out the third 
column (j = 3) of a 5 by 6 matrix B. Their dot product goes into row 2 and column 3 
of AB. The matrix AB has as many rows as A (4 rows), and as many columns as B. 
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* 
* * (AB)U * * * 

* 
* 

AB is 4 by 6 

Figure 2.8: Here i = 2 and j = 3. Then (ABh3 is (row 2). (column 3) = 'ba2kbk3' 

Example 1 Square matrices can be multiplied if and only if they have the same size: 

The first dot product is 1 ·2+ 1 ·3 = 5. Three more dot products give 6,1, and O. Each 
dot product requires two multiplications-thus eight in all. 

If A and Bare n by n. so is AB. It contains n2 dot products, row of A times column of 
B. Each dot product needs n multiplications. so the computation of AB uses n 3 separate 
multiplications. For n = 100 we multiply a million times. For n = 2 we have n 3 = 8. 

Mathematicians thought until recently that AB absolutely needed 23 = 8 multiplica­
tions. Then somebody found a way to do it with 7 (and extra additions). By breaking n by 
n matrices into 2 by 2 blocks, this idea also reduced the count for large matrices. Instead of 
n3 it went below n2 .8• and the exponent keeps falling.l The best at this moment is n2 .376. 

But the algorithm is so awkward that scientific computing is done the regular way: n2 dot 
product~in AB, and n multiplications for each one. 

Example 2 Suppose A is a row vector (1 by 3) and B is a column vector (3 by 1). Then 
AB is 1 by 1 (only one entry. the dot product). On the other hand B times A (a column 
times a row) is a full 3 by 3 matrix. This multiplication is allowed! 

Column times row 
(nxl)(lxn) = (nxn) 

A row times a column is an "inner" product-that is another name for dot product. A col­
umn times a row is an "outer" product. These are extreme cases of matrix multiplication. 

Rows and Columns of AB 

In the big picture, A multiplies each column of B. The result is a column of AB. In that 
column, we are combining the columns of A. Each column of A B is a combination of 

I Maybe 2.376 will drop to 2. No other number looks special, but no change for 10 years. 
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the columns of A. That is the column picture of matrix multiplication: 

Matrix A times column of B A [ b 1 ... b p ] = [Ab 1 •.. Ab p ]. 

The row picture is reversed. Each row of A multiplies the whole matrix B. The result is a 
row of AB. It is a combination of the rows of B: 

Row times matrix [
1 2 3] 

[ row i of A ] 4 5 6 = [row i of A B ]. 
789 

We see row operations in elimination (E times A). We see columns in A times x. The 
"row-column picture" has the dot products of rows with columns. Believe it or not, 
there is also a column-row picture. Not everybody knows that columns 1, ... , n of A 
multiply rows 1, ... ,n of B and add up to the same answer A B. Worked Example 2.3 C 
had numbers for n = 2. Example 3 will show how to multiply A B using columns times 
rows. 

The Laws for Matrix Operations 

May I put on record six laws that matrices do obey, while emphasizing an equation they 
don't obey? The matrices can be square or rectangular, and the laws involving A + Bare 
all simple and all obeyed. Here are three addition laws: 

A+B=B+A 
c(A + B) = cA + cB 

(commutative law) 
(distributive law) 

A + (B + C) = (A + B) + C ( associative law). 

Three more laws hold for multiplication, but AB = BA is not one of them: 

···1j'=j;'·.iJ~' 
C(A + B) = CA + CB 
(A + B)C = AC + BC 

1'11.<110)' .· .•. ·~,'·:f~B5,~·1 

(the commutative "law" is usually broken) 

(distributive law from the left) 
(distributive law from the right) 

(associative law for ABC) (parentheses not needed). 

When A and B are not square, AB is a different size from BA. These matrices can't be 
equal-even if both multiplications are allowed. For square matrices, almost any example 
shows that AB is different from BA: 

AB = [~ ~] [~ ~] = [~ ~] but BA = [~ ~] [~ ~] = [~ ~]. 
It is true that AI = I A. All square matrices commute with I and also with c I. Only these 
matrices c I commute with all other matrices. 

The law A(B + C) = AB + AC is proved a column at a time. Start with A(b + c) = 
Ab + Ac for the first column. That is the key to everything-linearity. Say no more. 

The law A(BC) = (AB)C means that you can multiply BC first or else AB first. 
The direct proof is sort of awkward (Problem 37) but this law is extremely useful. 
We highlighted it above; it is the key to the way we multiply matrices. 
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Look at the special case when A = B = C = square matrix. Then (A times A2) is 
equal to (A 2 times A). The product in either order is A 3 . The matrix powers A P follow the 
same rules as numbers: 

.. A P--;AAA· ·,A (pfaetors) 

Those are the ordinary laws for exponents. A3 times A4 is A7 (seven factors). A3 to 
the fourth power is A 12 (twelve A's). When p and q are zero or negative these rules stilI 
hold, provided A has a "-1 power"-which is the inverse matrix A-I. Then A 0 = I is the 
identity matrix (no factors). 

For a number, a-I is lla. For a matrix, the inverse is written A-I. (It is never I I A, 
except this is allowed in MATLAB.) Every number has an inverse except a = O. To decide 
when A has an inverse is a central problem in linear algebra. Section 2.5 will start on the 
answer. This section is a Bill of Rights for matrices, to say when A and B can be multiplied 
and how. 

Block Matrices and Block Multiplication 

We have to say one more thing about matrices. They can be cut into blocks (which are 
smaller matrices). This often happens naturally. Here is a 4 by 6 matrix broken into blocks 
of size 2 by 2-in this example each block is just I: 

4 by 6 matrix 
2 by 2 blocks A= 

1 0 
o 1 

1 0 
o 1 

1 0 
o 1 

1 0 
o 1 

1 0 
o 1 

1 0 
o 1 

= [~ I 
I ~]. 

If B is also 4 by 6 and the block sizes match, you can add A + B a block at a time. 
We have seen block matrices before. The right side vector b was placed next to A in 

the "augmented matrix". Then [A b] has two blocks of different sizes. Multiplying by 
an elimination matrix gave [EA Eb]. No problem to multiply blocks times blocks, when 
their shapes permit. 

BJ()~~.qt»ltjpl!¢~ti9fi ... lfthe;cutsbetw~¢11.C()hUlins··()fA···that¢hth~ellts&etween·r()ws· 
of 1l,;tb.en!l?llDc}C·ri\ultiP],ipation of A~ is allowed: .. 

(1) 

This equation is the same as if the blocks were numbers (which are 1 by 1 blocks). We are 
careful to keep A's in front of B's, because BA can be different. 

Main point When matrices split into blocks, it is often simpler to see how they act. The 
block matrix of I 's above is much clearer than the original 4 by 6 matrix A. 
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Example 3 (Important special case) Let the blocks of A be its n columns. Let the 
blocks of B be its n rows. Then block multiplication AB adds up columns times rows: 

Columns 
times 
rows 

This is another way to multiply matrices. Compare it with the usual rows times columns. 
Row 1 of A times column 1 of B gave the (1, 1) entry in AB. Now column 1 of A times 
row 1 of B gives a full matrix-not just a single number. Look at this example: 

Column 1 times row 1 
+ Column 2 times row 2 

(3) 

We stop there so you can see columns multiplying rows. If a 2 by 1 matrix (a column) 
multiplies a 1 by 2 matrix (a row), the result is 2 by 2. That is what we found. Dot 
products are inner products and these are outer products. In the top left corner the answer 
is 3 + 4 = 7. This agrees with the row-column dot product of (1, 4) with (3,1). 

Summary The usual way, rows times columns, gives four dot products (8 multiplications). 
The new way, columns times rows, gives two full matrices (the same 8 multiplications). 
The 8 multiplications, and the 4 additions, are just executed in a different order. 

Example 4 (Elimination by blocks) Suppose the first column of A contains 1,3,4. 
To change 3 and 4 to 0 and 0, multiply the pivot row by 3 and 4 and subtract. Those 
row operations are really multiplications by elimination matrices E21 and E31 : 

One ata time and E31 = [ ~ 
-4 

o 
1 
o 

The "block idea" is to do both eliminations with one matrix E. That matrix clears out the 
whole first column of A below the pivot a = 1: 

E = [-~ 
-4 

o 
1 
o 

O~] [;1 x~ X~] multiplies ~give EA = [i ~ ~l 
Using inverses from 2.5, a block matrix E can do elimination on a whole (block) column 
of A. Suppose A has four blocks A, B, C, D. Watch how E multiplies A by blocks: 

Block 
elimination 

Elimination multiplies the first row [A B] by CA -1 (previously c / a). It subtracts from 
C to get a zero block in the first column. It subtracts from D to get S = D - CA-1 B. 
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This is ordinary elimination, a column at a time-written in blocks. That final block S is 
D - CA-1 B,just like d - cbla. This is called the Schur complement. 

• REVIEW OF THE KEY IDEAS • 

1. The (i, j) entry of AB is (row i of A) • (column j of B). 

2. An m by n matrix times an n by p matrix uses mnp separate multiplications. 

3. A times BC equals AB times C (surprisingly important). 

4. AB is also the sum of these matrices: (column j of A) times (row j of B). 

5. Block multiplication is allowed when the block shapes match correctly. 

6. Block elimination produces the Schur complement D - CA -1 B. 

• WORKED EXAMPLES • 

2.4 A Put yourself in the position of the author! I want to show you matrix multiplica­
tions that are special, but mostly I am stuck with small matrices. There is one terrific fam­
ily of Pascal matrices, and they come in all sizes, and above all they have real meaning. 
I think 4 by 4 is a good size to show some of their amazing patterns. 

Here is the lower triangular Pascal matrix L. Its entries come from "Pascal's triangle". 
I will multiply L times the ones vector, and the powers vector: 

Pascal 
matrix 

1 
1 1 
121 
1 3 3 1 

1 
1 
1 
1 

1 
2 
4 
8 

1 
1 1 
121 
133 1 

1 
l+x 

(1 + X)2 

(1 + X)3 

Each row of L leads to the next row: Add an entry to the one on its left to get the entry 
below. Insymbols.eij+.eij-l = .ei +1j . The numbers after 1,3, 3, 1 would be 1,4,6,4, 1. 
Pascal lived in the 1600's, long before matrices, but his triangle fits perfectly into L. 

Multiplying by ones is the same as adding up each row, to get powers of 2. By writing 
out L times powers of x, you see the entries of L as the "binomial coefficients" that are so 
essential to gamblers: 

1 + 2x + lx2 = (1 + X)2 

The number "3" counts the ways to get Heads once and Tails twice in three coin flips: 
HTI and THT and TIH. The other "3" counts the ways to get Heads twice: HHT and 
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HTH and THH. Those are examples of "i choose j" = the number of ways to get j heads 
in i coin flips. That number is exactly lij, if we start counting rows and columns of L at 
i = 0 and j = 0 (and remember O! = 1): 

(.) ., l .. = l = i choose ]0 = __ l_. __ 
IJ. ., (. .)' } J.Z-J. (

4) 4! 24 
2 = 2!2! = (2)(2) = 6 

There are six ways to choose two aces out of four aces. We will see Pascal's triangle and 
these matrices again. Here are the questions I want to ask now: 

1. What is H = L2? This is the "hypercube matrix". 

2. Multiply H times ones and powers. 

3. The last row of H is 8,12,6,1. A cube has 8 comers, 12 edges, 6 faces, I box. 
What would the next row of H tell about a hypercube in 4D? 

Solution Multiply L times L to get the hypercube matrix H = L 2 : 

1 1 1 
1 1 1 1 2 1 
1 2 1 1 2 1 - 4 4 
1 3 3 1 1 3 3 1 8 12 

Now mUltiply H times the vectors of ones and powers: 

1 
2 1 
441 
8 12 6 1 

1 
1 
1 
1 

1 
3 
9 
27 

1 
2 1 
441 
8 12 6 1 

1 =H. 

6 1 

1 1 
2+x 

(2 + x)2 
(2 + X)3 

If x = 1 we get the powers of 3. If x = 0 we get powers of 2. When L produces powers 
of 1 + x, applying L again produces powers of 2 + x. 

How do the rows of H count corners and edges and faces of a cube? A square in 
2D has 4 comers, 4 edges, 1 face. Add one dimension at a time: 

Connect two squares to get a 3D cube. Connect two cubes to get a 4D hypercube. 

The cube has 8 comers and 12 edges: 4 edges in each square and 4 between the squares. 
The cube has 6 faces: I in each square and 4 faces between the squares. This row 8,12,6,1 
will lead to the next row 16,32,24,8,1. The rule is 2hi j + hi j-l = hi+1 j. 

Can you see this in four dimensions? The hypercube has 16 comers, no problem. It 
has 12 edges from one cube, 12 from the other cube, 8 that connect comers of those cubes: 
total 32 edges. It has 6 faces from each separate cube and 12 more from connecting pairs 
of edges: total 2 x 6 + 12 = 24 faces. It has one box from each cube and 6 more from 
connecting pairs of faces: total 8 boxes. And finally 1 hypercube. 
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2.4 B For these matrices, when does AB = BA? When does BC = CB? When does 
A times BC equal AB times C? Give the conditions on their entries p, q, r, z: 

A = [~ ~] B _ [1 1] 
- 0 1 C = [~ ~] 

If p, q, r, 1, Z are 4 by 4 blocks instead of numbers, do the answers change? 

Solution First of all, A times BC always equals AB times C. Parentheses are not 
needed in A(BC) = (AB)C = ABC. But we must keep the matrices in this order: 

Usually AB #: BA 

By chance BC = CB BC = [~ ~] 
B and C happen to commute. Part of the explanation is that the diagonal of B is I, which 
commutes with all 2 by 2 matrices. When p, q, r, Z are 4 by 4 blocks and 1 changes to I, 
all these products remain correct. So the answers are the same. 

2.4 C A directed graph starts with n nodes. The n by n adjacency matrix has aij = 1 
when an edge leaves node i and enters node j; if no edge then aU = O. 

node 1 to node 2 

node 1 to node 1 2 A = [! !] = adjacency matrix 

node 2 to node 1 

The i ,j entry of A2 is Laikakj. This is ailalj + ... + ainanj. Why does that sum 

count the two-step paths from i to any node to j? The i, j entry of Ak counts k-step paths: 

Count paths 
with two edges [

Ito 2 to 1, 1 to 1 to 1 
2 to 1 to 1 

1 to 1 to 2] 
2 to 1 to 2 

List all of the 3-step paths between each pair of nodes and compare with A 3 . 

Solution The number aikakj will be "I" if there is an edge from node i to k and an 
edge from k to j. This is a 2-step path. The number aikakj will be "0" if either of those 
edges (i to k, k to j) is missing. So the sum of aikakj is the number of 2-step paths leaving 
i and entering j . Matrix multiplication is just right for this count. 
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The 3-step paths are counted by A 3 ; we look at paths to node 2: 

counts the paths 
with three steps [ ... ... 

1 to 1 to 1 to 2, 1 to 2 to 1 to 2 ] 
2 to 1 to 1 to 2 
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These Ak contain the Fibonacci numbers 0, 1, 1,2,3,5,8, 13, ... coming in Section 6.2. 
Multiplying A by Ak involves Fibonacci's rule Fk+2 = Fk+l + Fk (as in 13 = 8 + 5): 

There are 13 six-step paths from node 1 to node 1, but I can't find them all. 
Ak also counts words. A path like 1 to 1 to 2 to 1 corresponds to the word aaba. The 

letter b can't repeat because there is no edge from 2 to 2. The i, j entry of Ak counts the 
words of length k + 1 that start with the i th letter and end with the j tho 

Problem Set 2.4 

Problems 1-16 are about the laws of matrix mUltiplication. 

1 A is 3 by 5, B is 5 by 3, C is 5 by 1, and D is 3 by 1. All entries are 1. Which of 
these matrix operations are allowed, and what are the results? 

BA AB ABD DBA 

2 What rows or columns or matrices do you multiply to find 

(a) the third column of AB? 

(b) the first row of A B? 

(c) the entry in row 3, column 4 of AB? 

(d) the entry in row 1, column 1 of CDE? 

3 Add AB to AC and compare with A(B + C): 

A(B + C). 

A = [~ ; ] and B = [6 7] and C = [~ ~ ] . 

4 In Problem 3, multiply A times BC. Then multiply AB times C. 
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5 Compute A 2 and A 3 . Make a prediction for A 5 and An: 

A = [~ ~ ] and A = [~ ~]. 

6 Show that (A + B)2 is different from A2 + 2AB + B2, when 

A = [~ ~ ] and B = [~ ~]. 
Write down the correct rule for (A + B)(A + B) = A2 + __ + B2. 

7 True or false. Give a specific example when false: 

(a) If columns 1 and 3 of B are the same, so are columns 1 and 3 of AB. 

(b) Ifrows 1 and 3 of B are the same, so are rows 1 and 3 of AB. 

(c) If rows 1 and 3 of A are the same, so are rows 1 and 3 of ABC. 

(d) (AB)2 = A2 B2. 

8 How is each row of DA and EA related to the rows of A, when 

D = [~ ~ ] and E = [~ ! ] and A = [~ ~ ]? 
How is each column of AD and AE related to the columns of A? 

9 Row 1 of A is added to row 2. This gives EA below. Then column 1 of EA is added 
to column 2 to produce (EA)F: 

EA = [! ~] [~ ~] = [a~c b!d] 

and (EA)F = (EA) [~ !] = [a ~ c a + : ~ i + d ] . 

(a) Do those st~ps in the opposite order. First add column 1 of A to column 2 
by AF, then add row 1 of AF to row 2 by E(AF). 

(b) Compare with (EA)F. What law is obeyed by matrix multiplication? 

10 Row 1 of A is again added to row 2 to produce EA. Then F adds row 2 of EA to 
row 1. The result is F(EA): 

F (E A) = [1 1] [a b] = [2a + c 2b + d] . 
o 1 a+c b+d a+c b+d 

(a) Do those steps in the opposite order: first add row 2 to row 1 by FA, then add 
row 1 of FA to row 2. 

(b) What law is or is not obeyed by matrix multiplication? 
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11 (3 by 3 matrices) Choose the only B so that for every matrix A 

(a) BA = 4A 

(b) BA = 4B 

(c) BA has rows 1 and 3 of A reversed and row 2 unchanged 

(d) All rows of BA are the same as row 1 of A. 

12 Suppose AB = BA and AC = CA for these two particular matrices Band C: 

A--[ac dbJ [1 OJ commutes with B = 0 0 and C = [~ ~ J. 
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Prove that a = d and b = c = o. Then A is a multiple of I. The only matrices that 
commute with Band C and all other 2 by 2 matrices are A = mUltiple of I. 

13 Which of the following matrices are guaranteed to equal (A - B)2: A2 - B2, 
(B - A)2, A2 - 2AB + B2, A(A - B) - B(A - B), A2 - AB - BA + B2? 

14 True or false: 

(a) If A2 is defined then A is necessarily square. 

(b) If AB and BA are defined then A and B are square. 

(c) If AB and BA are defined then AB and BA are square. 

(d) If A B = B then A = I. 

15 If A is m by n, how many separate multiplications are involved when 

(a) A multiplies a vector x with n components? 

(b) A multiplies an n by p matrix B? 

(c) A mUltiplies itself to produce A2? Here m = n. 

16 For A = [~ :!] and B = [f g :], compute these answers and nothing more: 

(a) column 2 of AB ; 

(b) row 2 of AB 

(c) row 2 of A A = A 2 

(d) row 2 of AAA = A3. 

Problems 17-19 use aij for the entry in row i, column j of A. 

17 Write down the 3 by 3 matrix A whose entries are 

(a) aU = minimum of i and j 

(b) aij = (-1)i+ j 

(c) aij = i/j. 
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18 What words would you use to describe each of these classes of matrices? Give a 3 
by 3 example in each class. Which matrix belongs to all four classes? 

(a) aU = 0 if i i- j 

(b) aU = 0 if i < j 

(c) aU = aji 

(d) aU =alj· 

19 The entries of A are aU. Assuming that zeros don't appear, what is 

(a) the first pivot? 

(b) the multiplier .e31 of row 1 to be subtracted from row 3? 

(c) the new entry that replaces a32 after that subtraction? 

(d) the second pivot? 

Problems 20-24 involve powers of A. 

A= 

020 0 
002 0 
000 2 
o 0 0 0 

and v = 

21 Find all the powers A2, A 3 , ... and AB, (AB)2, ... for 

x 
y 
z 
t 

22 By trial and error find real nonzero 2 by 2 matrices such that 

Be =0 DE = -ED (not allowing DE = 0). 

23 (a) Find a nonzero matrix A for which A2 = o. 
(b) Find a matrix that has A2 i- 0 but A 3 = o. 

24 By experiment with n = 2 and n = 3 predict An for these matrices: 
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Problems 25-31 use column-row multiplication and block multiplication. 

25 Multiply A times I using columns of A (3 by 3) times rows of I. 

26 Multiply A B using columns times rows: 

27 Show that the product of upper triangular matrices is always upper triangular: 

AB = [~ ~ ~] [~ ~ ~] = [0 ] . 
OOx OOx 00 

Proof using dot products (Row times column) (Row 2 of A). (column 1 of B)= O. 
Which other dot products give zeros? 

Proofusingfull matrices (Column times row) Draw x's and O's in (column 2 of A) 
times (row 2 of B). Also show (column 3 of A) times (row 3 of B). 

28 Draw the cuts in A (2 by 3) and B (3 by 4) and AB to show how each of the four 
multiplication rules is really a block multiplication: 

(1) Matrix A times columns of B. 

(2) Rows of A times the matrix B. 

(3) Rows of A times columns of B. 

(4) Columns of A times rows of B. 

Columns of A B 

Rows of AB 

Inner products (numbers in AB) 

Outer products (matrices add to AB) 

29 Which matrices E21 and E31 produce zeros in the (2, 1) and (3, 1) positions of E21 A 
and E31A? 

A=H 
1 
o 
5 

Find the single matrix E = E31 E21 that produces both zeros at once. Multiply EA. 

30 Block multiplication says that column 1 is eliminated by 

EA = ~c ~ a ~] [ : ~] = [~ D - ~ b j a l 
In Problem 29, what are c and D and what is D - cb ja? 

31 With i 2 = -1, the product of (A +iB) and (x +iy) is Ax +iBx +iAy - By. Use 
blocks to separate the real part without i from the imaginary part that multiplies i: 

[A -B] [x] = [AX - BY] ~eal ~art 
? ? y ? Imagmary part 
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32 (Very important) Suppose you solve Ax = b for three special right sides b: 

If the three solutions Xl, X2, X3 are the columns of a matrix X, what is A times X? 

33 If the three solutions in Question 32 are Xl = (1, I, 1) and X 2 = (0, I, I) and 
X3 = (0,0,1), solve Ax = b when b = (3,5,8). Challenge problem: What is A? 

34 Find all matrices A = [~ ~] that satisfy AU U = U U A. 

35 Suppose a "circle graph" has 4 nodes connected (in both directions) by edges around 
a circle. What is its adjacency matrix from Worked Example 2.4 C? What is A2? 
Find all the 2-step paths (or 3-letter words) predicted by A2. 

Challenge Problems 

36 Practical question Suppose A is m by n, B is n by p, and C is p by q. Then 
the multiplication count for (AB)C is mnp + mpq. The same answer comes from 
A times BC with mnq + npq separate multiplications. Notice npq for BC. 

(a) If A is 2 by 4, B is 4 by 7, and C is 7 by 10, do you prefer (AB)C or A(BC)? 

(b) With N -component vectors, would you choose (u TV) W T or u T (vw T)? 

(c) Divide by mnpq to show that (AB)C is faster when n-1 +q-l < m-l + p-I. 

37 To prove that (AB)C = A(BC), use the column vectors b I , ... , bn of B. First 
suppose that C has only one column e with entries CI, ... , Cn : 

AB has columns AbI,.'" Abn and then (AB)e equals cIAbl + ... + cnAbn. 

Be has one column cIb 1 + ... + cnbn and then A(Be) equals A(c1b l + ... +cnbn). 

Linearity gives equality of those two sums. This proves (AB)e = A(Be). The same , 
is true for all other of C. Therefore (AB)C = A(BC). Apply to inverses: 

If BA = I and AC = I, prove that the left-inverse B equals the right-inverse C. 
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2.5 Inverse Matrices 

Suppose A is a square matrix. We look for an "inverse matrix" A-I of the same size, such 
that A -1 times A equals I. Whatever A does, A-I undoes. Their product is the identity 
matrix-which does nothing to a vector, so A -1 Ax = x. But A -1 might not exist. 

What a matrix mostly does is to multiply a vector x. Multiplying Ax = b by A-I 
gives A-I Ax = A-lb. This is x = A-lb. The product A-I A is like multiplying by 
a number and then dividing by that number. A number has an inverse if it is not zero-­
matrices are more complicated and more interesting. The matrix A-I is called" A inverse." 

Not all matrices have inverses. This is the first question we ask about a square matrix: 
Is A invertible? We don't mean that we immediately calculate A-I. In most problems 
we never compute it! Here are six "notes" about A-I. 

Note 1 The inverse exists if and only if elimination produces n pivots (row exchanges 
are allowed). Elimination solves Ax = b without explicitly using the matrix A-I. 

Note 2 The matrix A cannot have two different inverses. Suppose BA = I and also 
A C = I. Then B = C, according to this "proof by parentheses": 

B(AC) = (BA)C gives BI = IC or B = C. (2) 

This shows that a left-inverse B (multiplying from the left) and a right-inverse C (multi­
plying A from the right to give AC = 1) must be the same matrix. 

Note 3 If A is invertible, the one and only solution to Ax = b is x = A-1b: 

,-'\ .... -,.~ ,"." --'--.~ .. "~-, ~ ~ ~ ,'.~-' 

·f!~lfi~i~;},>,~:~, .. :jlJ:',/··1!~,)~7~ .. ··· .. · .. :'1;~€'rt"i~~, .. ·.·.···<:~;~.4~~··.··· .•.• ···tt7~'~,. 
, 

Note 4 (Important) Suppose there is a nonzero vector x such that Ax = O. Then A 
cannot have an inverse. No matrix can bring 0 back to x. 

If A is invertible, then Ax = 0 can only have the zero solution x = A-lO = O. 

Note 5 A 2 by 2 matrix is invertible if and only if ad - be is not zero: 

2 by 2 Inverse: 
[ ]

-1 I [ ] a b d -b 
e d - ad - be -e a' 

(3) 

This number ad -be is the determinant of A. A matrix is invertible if its determinant is not 
zero (Chapter 5). The test for n pivots is usually decided before the determinant appears. 
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Note 6 A diagonal matrix has an inverse provided no diagonal entries are zero: 

Example 1 The 2 by 2 matrix A = [~~] is not invertible. It fails the test in Note 5, 
because ad - bc equals 2 - 2 = O. It fails the test in Note 3, because Ax = 0 when 
x = (2, -1). It fails to have two pivots as required by Note 1. 

Elimination turns the second row of this matrix A into a zero row. 

The Inverse of a Product A B 

For two nonzero numbers a and b, the sum a + b might or might not be invertible. The 
numbers a = 3 and b = -3 have inverses ~ and -~. Their sum a + b = 0 has no inverse. 
But the product ab = -9 does have an inverse, which is t times -to 

For two matrices A and B, the situation is similar. It is hard to say much about the 
invertibility of A + B. But the product A B has an inverse, if and only if the two factors 
A and B are separately invertible (and the same size). The important point is that A-I and 
B-1 come in reverse order: 

!~~~&~~~~~~~~:~~(l~::~~~~*~~t~~'~;:::~;C;,. "'." 
I'Ft .. '. ··"".Y';-,:<·;-' :, . J4) 

':: <~·:,,::"L:'\"L~,_'.\.',~~::L _',,',: .'.:'._'::'.-_ 

To see why the order is reversed, multiply AB times B-1 A-I. Inside that is BB-l = I: 

Inverse of AB (AB)(B- l A-I) = AI A-I = AA-l = I. 

We moved parentheses to multiply BB-l first. Similarly B-1 A-I times AB equals I. This 
illustrates a basic rule of mathematics: Inverses come in reverse order. It is also common 
sense: If you put on socks and then shoes, the first to be taken off are the . The same 
reverse order applies to thiee or more matrices: 

Reverse order (5) 

Example 2 Inverse of an elimination matrix. If E subtracts 5 times row 1 from row 2, 
then E- l adds 5 times row 1 to row 2: 

o 
1 
o 

Multiply EE-1 to get the identity matrix I. Also multiply E- l E to get I. We are adding 
and subtracting the same 5 times row 1. Whether we add and then subtract (this is E E -1 ) 

or subtract and then add (this is E- l E), we are back at the start. 
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For square matrices, an inverse on one side is automatically an inverse on the other side. 
If AB = I then automatically BA = I. In that case B is A -I. This is very useful to know 
but we are not ready to prove it. 

Example 3 Suppose F subtracts 4 times row 2 from row 3, and F- 1 adds it back: 

[
1 ° 

F = ° 1 ° -4 ~] [1 ° 0] 
and F-

1 
= ° 1 ° . ° 4 1 

Now multiply F by the matrix E in Example 2 to find FE. Also multiply E- l times F-l 
to find (FE)-I. Notice the orders FE and E-l F- l ! 

is inverted by E- [ F- [ = [:., ° 0] 
1 ° . 
4 1 

(6) 

The result is beautiful and correct. The product FE contains "20" but its inverse doesn't. 
E subtracts 5 times row 1 from row 2. Then F subtracts 4 times the new row 2 (changed 
by row 1) from row 3. In this order FE, row 3 feels an effectfrom row I. 

In the order E-l F- l , that effect does not happen. First F- l adds 4 times row 2 to 
row 3. After that, E- l adds 5 times row 1 to row 2. There is no 20, because row 3 doesn't 
change again. In this order E-l F-1, row 3 feels no effectfrom row 1. 

Itteliirdhati'O:irpid~r.f1f?li6Ws~.,mi~Yers¢?til¢tii~~lfbllkwSc11-=:i';" .. , ........ '. '. '. . . ' 
e~1.;IJ'.-i··.··is.q~i~lq.'t;IJ.~'m~lt;;:Jlll~rs;5i·:4fa¥I'fntd'1i14¢''e,b,elQw.·th,{.~liagon,al.,·(jl.J .. 's~ 
, " ' , : .:'"'' _ . .' -" '.' ',; ,- , . ,,"',' " ".'--,' ,,- ,''', '- .' "" "".'," -' ,'-'. ," " '" . . - . ,,' , " " , ',,~ 

This special multiplication E- l p-l and E- l F-1G-l will be useful in the next sec­
tion. We will explain it again, more completely. In this section our job is A -I, and we 
expect some serious work to compute it. Here is a way to organize that computation. 

Calculating A-I by Gauss-Jordan Elimination 

I hinted that A-I might not be' explicitly needed. The equation Ax = b is solved by 
x = A-lb. But it is not necessary or efficient to compute A-I and multiply it times b. 
Elimination goes directly to x. Elimination is also the way to calculate A-I, as we now 
show. The Gauss-Jordan idea is to solve AA- l = I ,finding each column of A-I. 

A multiplies the first column of A-I (call that XI) to give the first column of I (call 
that e 1)' This is our equation Ax 1 = e 1 = (1, 0, 0). There will be two more equations. 
Each of the columns Xl, X 2, X 3 of A-I is mUltiplied by A to produce a column of I: 

- ,: -':.:;". -.': ~ . ~, .. , .,. , ... ',"" ... 

3 columns of A-I (l4,'~P)f:.>1 A[ Xl x2 X3] = [el e2 e3] ' ....... , .. '$ •.. ' (7) 

To invert a 3 by 3 matrix A, we have to solve three systems of equations: Ax I = e I and 
AX2 = e2 = (0,1,0) and AX3 = e3 = (0,0,1). Gauss-Jordan finds A-I this way. 
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The Gauss-Jordan method computes A -1 by solving all n equations together. 
Usually the "augmented matrix" [A b] has one extra column b. Now we have three 
right sides e 1 , e 2, e 3 (when A is 3 by 3). They are the columns of I, so the augmented 
matrix is really the block matrix [A I]. I take this chance to invert my favorite matrix K, 
with 2 's on the main diagonal and -1 's next to the 2 's: 

2 -1 

o ~ 
o -1 

2 -I 

o 
-1 

2 

o 
o ~-I 
001 

1 
1 
2 
o 

1 
1 

I 
3 

o 
1 

o 
o 
1 
o 
o 
1 
2 
3" 

~] Start Gauss-Jordan on K 

~] 
~] 

(~ row 1 + row 2) 

(~ row 2 + row 3) 

We are halfway to K- 1• The matrix in the first three columns is U (upper triangular). The 
pivots 2, ~, ~ are on its diagonal. Gauss would finish by back substitution. The contribution 
of Jordan is to continue with elimination! He goes all the way to the "reduced echelon 
form". Rows are added to rows above them, to produce zeros above the pivots: 

-+[ 
2 -1 0 1 0 0 ] ( Zero above ) 0 3 0 3 3 3 (~ row 3 + row 2) 

third pivot ]; 4 ]; 4 
0 0 4 1 2 1 3" 3" 3" 

-+[ 
2 0 0 3 1 1 

] (~ row 2 + row 1) ]; 2 
( Zero above ) 0 3 0 3 3 3 

second pivot 2 4" 2 4" 
0 0 4 1 2 1 3" 3" 3" 

The last Gauss-Jordan step is to divide each row by its pivot. The new pivots are 1. We 
have reached I in the first half of the matrix, because K is invertible. The three columns 
of K-1 are in the second half of [I K-1 ]: 

(divide by 2) 

(divide by ~) 

(divide by ~) 

100 

010 

001 

Starting from the 3 by 6 matrix [K I], we ended with [I K-1 ]. Here is the whole 
Gauss-Jordan process on one line for any invertible matrix A: 

Gauss-Jordan 
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The elimination steps create the inverse matrix while changing A to I. For large matrices, 
we probably don't want A-I at all. But for small matrices, it can be very worthwhile to 
know the inverse. We add three observations about this particular K- I because it is an 
important example. We introduce the words symmetric, tridiagonal, and determinant: 

1. K is symmetric across its main diagonal. So is K- I • 

2. K is tridiagonal (only three nonzero diagonals). But K-I is a dense matrix with 
no zeros. That is another reason we don't often compute inverse matrices. The 
inverse of a band matrix is generally a dense matrix. 

3. The product of pivots is 2(~)(~) = 4. This number 4 is the determinant of K. 

K -1 involves division by the determinant K-1 = - 2 4 2 . 1 [3 2 1] 
4 1 2 3 

(8) 

This is why an invertible matrix cannot have a zero determinant. 

Example 4 Find A -1 by Gauss-Jordan elimination starting from A = [~~]. There are 
two row operations and then a division to put 1 's in the pivots: 

[A I] = [! 3 1 ~] -+ [~ 3 1 ~] (this is [U L -1 ]) 
7 0 1 -2 

-+ [~ 0 7 -3] [1 
0 7 -t] ]; (this is [ I A-I]) . 

1 -2 1 -+ 0 1 -2 

That A-I involves division by the determinant ad - bc = 2·7 - 3·4 = 2. The code for 
X = inverse(A) can use rref, the "row reduced echelon form" from Chapter 3: 

I = eye (n); 
R = rref ([A I]); 
X = R(:, n + 1 : n -f. n) 

% Define the n by n identity matrix 
% Eliminate on the augmented matrix [A I] 
% Pick A-I from the last n columns of R 

A must be invertible, or elimination cannot reduce it to I (in the left half of R). 
Gauss-Jordan shows why A-I is expensive. We must solve n equations for its n columns. 

To solve A x = b without A-I, we deal with one column b to find one column x. 

In defense of A-I, we want to say that its cost is not n times the cost of one system 
Ax = h. Surprisingly, the cost for n columns is only multiplied by 3. This saving is 
because the n equations Ax i = e i all involve the same matrix A. Working with the right 
sides is relatively cheap, because elimination only has to be done once on A. 

The complete A-I needs n3 elimination steps, where a single x needs n3/3. The next 
section calculates these costs. 
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Singular versus Invertible 

We come back to the central question. Which matrices have inverses? The start of this 
section proposed the pivot test: A -1 exists exactly when A has a full set of n pivots. 
(Row exchanges are allowed.) Now we can prove that by Gauss-Jordan elimination: 

1. With n pivots, elimination solves all the equations Ax i = e i. The columns x i go 
into A-I. Then AA- I = I and A-I is at least a right-inverse. 

2. Elimination is really a sequence of multiplications by E's and P's and D-1: 

Left-inverse (D- 1 ···E··.P ... E)A = I. (9) 

D -1 divides by the pivots. The matrices E produce zeros below and above the pivots. 
P will exchange rows if needed (see Section 2.7). The product matrix in equation (9) is 
evidently a left-inverse. With n pivots we have reached A-I A = I. 

The right-inverse equals the left-inverse. That was Note 2 at the start of in this section. 
So a square matrix with a full set of pivots will always have a two-sided inverse. 

Reasoning in reverse will now show that A must have n pivots if A C = I. (Then we 
deduce that C is also a left-inverse and CA = I.) Here is one route to those conclusions: 

1. If A doesn't have n pivots, elimination will lead to a zero row. 
2. Those elimination steps are taken by an invertible M. So a row of M A is zero. 
3. If AC = I had been possible, then MAC = M. The zero row of M A, times C, 

gives a zero row of M itself. 

4. An invertible matrix M can't have a zero row! A must have n pivots if A C = I. 

That argument took four steps, but the outcome is short and important. 

-- -- ,- - -! - --;: l- ... -. -;:-,,---. ~l-- - ~~" -- ~~.-, 

;;~.r~~~~~~~§i:=~~;~=~! 
"'::.\ -;., :'~\:'.::-'~'~',.'~~-: 

Ji/-(i'{<"!!.}?;i If A C = I then CA = I and C = A-I 
',':';,: '~--}:~~~'-;'; ':::::':,'.~;.~,~.~~<~;:''' __ ' ':~'::,:,,;·_~:~·;:.L_.-_: < -, " : ~'_: :.:,,(, _ .' : • :.:::. '::'. _ -." :::'r;-'--':,~':::,"''..::':,;:.':>:':.,' .- ,.r, .. ".".',. _. ".,'-'. 

Example 5 If L is lower triangular with 1 's on the diagonal, so is L -1. 

A triangular matrix is invertible if and only if no diagonal entries are zero. 

Here L has l's so L -1 also has 1 'So Use the Gauss-Jordan method to construct L -1. Start 
by subtracting multiples of pivot rows from rows below. Normally this gets us halfway to 
the inverse, but for L it gets us all the way. L -1 appears on the right when I appears on 
the left. Notice how L -1 contains 11, from 3 times 5 minus 4. 
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Gauss-Jordan 

U 
0 0 1 0 

~]=[L I] 1 0 0 1 
on triangular L 

S 1 0 0 

0 0 1 0 (3 times row 1 from row 2) 
1 0 -3 1 (4 times row 1 from row 3) -+ [~ 

-+ 0 5 1 -4 0 n (then 5 times row 2 from row 3) 

-+ [~ 
0 0 1 0 n = [I 1 0 -3 1 L -1]. 
0 1 11 -s 

L goes to I by a product of elimination matrices E32E31E21. So that product is L -1. 
All pivots are l's (a full set). L -1 is lower triangular, with the strange entry "11". 

That 11 does not appear to spoil 3, 4, 5 in the good order E:;l E:;l E:;l = L. 

• REVIEW OF THE KEY IDEAS • 

1. The inverse matrix gives AA-I = I and A-I A = I. 
2. A is invertible if and only if it has n pivots (row exchanges allowed). 

3. If Ax = 0 for a nonzero vector x, then A has no inverse. 

4. The inverse of AB is the reverse product B-1 A-I. And (ABC)-I = C- I B-1 A-I. 

S. The Gauss-Jordan method solves AA-I = I to find the n columns of A-I. The 
augmented matrix [A I] is row-reduced to [I A-I]. 

• . WORKED EXAMPLES • 

2.5 A The inverse of a triangular difference matrix A is a triangular sum matrix S: 

I] = [ -1 0 0 I 0 

n-+u 
0 0 1 0 n [A 1 0 0 1 1 0 1 1 

-1 1 0 0 -1 1 0 0 

-+U 
0 0 1 0 ~ ] = [I A -[ ] = [I sum matrix ]. 1 0 1 1 
0 1 1 1 

If I change a 13 to -1, then all rows of A add to zero. The equation Ax = 0 will now 
have the nonzero solution x = (1,1,1). A clear signal: This new A can't be inverted. 
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2.5 B Three of these matrices are invertible, and three are singular. Find the inverse 
when it exists. Give reasons for noninvertibility (zero determinant, too few pivots, nonzero 
solution to Ax = 0) for the other three. The matrices are in the order A, B, C, D, S, E: 

Solution 

C-1 = _1 [0 6] 
36 6 -6 [ 

1 0 0] 
S-1 = -1 1 0 

o -1 1 

A is not invertible because its determinant is 4 • 6 - 3 • 8 = 24 - 24 = O. D is not 
invertible because there is only one pivot; the second row becomes zero when the first row 
is subtracted. E is not invertible because a combination of the columns (the second column 
minus the first column) is zero--in other words Ex = 0 has the solution x = (-1,1,0). 

Of course all three reasons for noninvertibility would apply to each of A, D, E. 

2.5 C Apply the Gauss-Jordan method to invert this triangular "Pascal matrix" L. 
You see Pascal's triangle-adding each entry to the entry on its left gives the entry below. 
The entries of L are "binomial coefficients". The next row would be 1,4,6,4, 1. 

1 0 0 0 

Triangular Pascal matrix L= 
1 1 0 0 

= abs(pascal (4,1)) 
1 2 1 0 
1 3 3 1 

Solution Gauss-Jordan starts with [L 1 ] and produces zeros by subtracting row 1: 

1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 

[L I] = 
1 1 0 0 0 1 0 0 0 1 0 0 -1 1 0 0 
1 2 1 0 0 0 1 0 -+ 0 2 1 0 -1 0 1 0 
1 3 13 1 0 0 0 1 0 3 3 1 -1 0 0 1 

The next stage creates zeros below the second pivot, using multipliers 2 and 3. Then the 
last stage subtracts 3 times the new row 3 from the new row 4: 

1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 
0 1 0 0 -1 1 0 0 0 1 0 0 -1 1 0 0 = [I L -1]. -+ 0 0 1 0 1 -2 1 0 -+ 0 0 1 0 1 -2 1 0 
0 0 3 1 2 -3 0 1 0 0 0 1 -1 3 -3 1 

All the pivots were I! So we didn't need to divide rows by pivots to get I. The inverse 
matrix L -1 looks like L itself, except odd-numbered diagonals have minus signs. 

The same pattern continues to n by n Pascal matrices, L -1 has "alternating diagonals". 
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Problem Set 2.5 

1 Find the inverses (directly or from the 2 by 2 formula) of A, B, C: 

A = [~ ~ ] and B = [~ ~ ] and C = [; ~]. 
2 For these "permutation matrices" find p-l by trial and error (with 1 's and O's): 

[
0 0 1] 

P = 0 1 0 
100 [

0 1 0] 
and P = 0 0 1 . 

100 

3 Solve for the first column (x, y) and second column (t, z) of A-I: 

and [ 10 20] [t] = [0] 20 50 z l' 

4 Show that U ~] is not invertible by trying to solve AA -1 = I for column 1 of A-I: 

(
For a different A, could column 1 of A-I) 
be possible to find but not column 2? 

5 Find an upper triangular V (not diagonal) with V 2 = I which gives V = V-I. 

6 (a) If A is invertible and AB = AC, prove quickly that B = C. 

(b) If A = [11], find two different matrices such that A B = A C . 

7 (Important) If A has row 1 + row 2 = row 3, show that A is not invertible: 

(a) Explain why Ax = (1,0,0) cannot have a solution. 

(b) Which right sides (b I , b2 , b3) might allow a solution to Ax = b? 

(c) What happens to row 3 in elimination? 

8 If A has column 1 + column 2 = column 3, show that A is not invertible: 
" 

(a) Find a nonzero solution x to Ax = O. The matrix is 3 by 3. 

(b) Elimination keeps column 1 + column 2 = column 3. Explain why there is no 
third pivot. 

9 Suppose A is invertible and you exchange its first two rows to reach B. Is the new 
matrix B invertible and how would you find B-1 from A-I? 

10 Find the inverses (in any legal way) of 

0 0 0 2 3 2 0 0 

A= 0 0 3 0 
and B= 

4 3 0 0 
0 4 0 0 0 0 6 5 
5 0 0 0 0 0 7 6 
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11 (a) Find invertible matrices A and B such that A + B is not invertible. 

(b) Find singular matrices A and B such that A + B is invertible. 

12 If the product C = A B is invertible (A and B are square), then A itself is invertible. 
Find a formula for A-I that involves C -1 and B. 

13 If the product M = ABC ofthree square matrices is invertible, then B is invertible. 
(So are A and C.) Find a formula for B-1 that involves M- l and A and C. 

14 If you add row 1 of A to row 2 to get B, how do you find B-1 from A-I? 

Notice the order. The inverse of B = [~ ~] [ A] is 

15 Prove that a matrix with a column of zeros cannot have an inverse. 

16 Multiply [~ ~] times [_~ -~]. What is the inverse of each matrix if ad =f:. be? 

17 (a) What 3 by 3 matrix E has the same effect as these three steps? Subtract row 1 
from row 2, subtract row 1 from row 3, then subtract row 2 from row 3. 

(b) What single matrix L has the same effect as these three reverse steps? Add row 
2 to row 3, add row 1 to row 3, then add row 1 to row 2. 

18 If B is the inverse of A 2 , show that A B is the inverse of A. 

19 Find the numbers a and b that give the inverse of 5 * eye(4) - ones(4,4): 

4 -1 -1 -1 
-1 

b b b a 
-1 4 -1 -1 b a b b 
-1 -1 4 --1 b b a b 
-1 -1 -1 4 b b b a 

What are a and b in the inverse of 6 * eye(5) - ones(5,5)? 

20 Show that A = 4 * eye(4) - ones(4,4) is not invertible: Multiply A * ones(4, 1). 

21 There are sixteen 2 by 2 matrices whose entries are l's and O's. How many of them 
are invertible? 

Questions 22-28 are about the Gauss-Jordan method for calculating A-I. 

22 Change I into A-I as you reduce A to I (by row operations): 

23 

[A I] = [~ ; ~ ~ ] and [A I] = [~ ~ ~ ~ ] 
Follow the 3 by 3 text example but with plus signs in A. Eliminate above and below 
the pivots to reduce [A I] to [I A-I]: 

[A Il=U 101 
2 1 0 
1 2 0 

o 0] 
1 0 . 
o 1 
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24 Use Gauss-Jordan elimination on [U I] to find the upper triangular U- l : 

uu-1 = I 

25 Find A-I and B-1 (if they exist) by elimination on [ A I] and [B I]: 

[
2 1 1] 

A = 1 2 1 
1 1 2 

and B = [-i 
-1 

-1 -1] 
2 -1 . 

-1 2 

26 What three matrices E21 and E12 and D-I reduce A = U~] to the identity matrix? 
Multiply D-l E12E21 to find A-I. 

27 Invert these matrices A by the Gauss-Jordan method starting with [A I]: 

A = 2 1 3 
[

1 0 0] 
and A = 1 2 2 . [

1 1 1] 
001 123 

28 Exchange rows and continue with Gauss-Jordan to find A-I: 

[
0 2 1 0] [A 1]= 2 2 0 1 . 

29 True or false (with a counterexample if false and a reason if true): 

(a) A 4 by 4 matrix with a row of zeros is not invertible. 

(b) Every matrix with 1 's down the main diagonal is invertible. 

(c) If A is invertible then A-I and A2 are invertible. , 

30 For which three numbers C is this matrix not invertible, and why not? 

[

2 C C] 
A= C C C • 

8 7 C 

31 Prove that A is invertible if a =1= 0 and a =1= b (find the pivots or A-I): 

[

a b b] 
A= a a b . 

a a a 
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32 This matrix has a remarkable inverse. Find A -1 by elimination on [A I]. Extend 
to a 5 by 5 "alternating matrix" and guess its inverse; then multiply to confirm. 

I -I 

Invert A = o I 
o 0 
o 0 

I -I 
-I I 

I -I 
o I 

and solve Ax = (1,1, 1, 1). 

33 Suppose the matrices P and Q have the same rows as I but in any order. They are 
"permutation matrices". Show that P - Q is singular by solving (P - Q)x = O. 

34 Find and check the inverses (assuming they exist) of these block matrices: 

[~ ~] [~ ~] [~ £]. 
35 Could a 4 by 4 matrix A be invertible if every row contains the numbers 0,1,2,3 in 

some order? What if every row of B contains 0,1,2, -3 in some order? 

36 In the Worked Example 2.5 C, the triangular Pascal matrix L has an inverse with 
"alternating diagonals". Check that this L -1 is DLD, where the diagonal matrix 
D has alternating entries 1, -1,1, -1. Then LDLD = I, so what is the inverse of 
LD = pascal (4,1)? 

37 The Hilbert matrices have Hij = Ij(i + j - 1). Ask MATLAB for the exact 6 by 
6 inverse invhilb(6). Then ask it to compute inv(hilb(6)). How can these be different, 
when the computer never makes mistakes? 

38 (a) Use inv(P) to invert MATLAB's 4 by 4 symmetric matrix P = pascal(4). 

(b) Create Pascal's lower triangular L = abs(pascal(4,1)) and test P = LLT. 

39 If A = ones(4) and b = rand(4,1), how does MATLAB tell you that Ax = b has no 
solution? For the special b = ones(4,1), which solution to Ax = b is found by A \b? 

Challenge Problems 

40 (Recommended) A is a 4 by 4 matrix with 1 's on the diagonal and -a, -b, -c on the 
diagonal above. Find A -1 for this bidiagonal matrix. 

41 Suppose E1, E2, E3 are 4 by 4 identity matrices, except E1 has a, b, c in column 1 
and E2 has d, e in column 2 and E3 has f in column 3 (below the 1 's). Multiply 
L = E1E2E3 to show that all these nonzeros are copied into L. 

E1E2E3 is in the opposite order from elimination (because E3 is acting first). But 
E 1 E2 E 3 = L is in the correct order to invert elimination and recover A. 
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42 Direct multiplications 1-4 give M M-I - I, and I would recommend doing #3. 
M-I shows the change in A-I (useful to know) when a matrix is subtracted from A: 

1 M = I -uvT 

2 M = A-uvT 

3 M = I -VV 
4 M=A-VW-IV 

and 
and 
and 
and 

M-I = I + uvT /(1- vTu) (rank 1 change in I) 
M-I = A-I + A-1uvT A-I /(1- vT A-Iu) 
M-I = In + V(Im - VV)-l V 
M-1 = A-I + A-IV(W - VA-1V)-IVA- 1 

The Woodbury-Morrison fonnula 4 is the "matrix inversion lemma" in engineering. 
The Kalman filter for solving block tridiagonal systems uses fonnula 4 at each step. 
The four matrices M- 1 are in diagonal blocks when inverting these block matrices 
(vT is 1 by n, u is n by 1, V is m by n, V is n by m). 

[~T ~] [
In V] 
V 1m 

43 Second difference matrices have beautiful inverses if they start with TIl - 1 
(instead of Kil = 2). Here is the 3 by 3 tridiagonal matrix T and its inverse: 

Tn = 1 
[

3 2 
T- I = 2 2 

1 1 l] 
One approach is Gauss-Jordan elimination on [T I]. That seems too mechanical. 
I would rather write T as the product of first differences L times V. The inverses of 
L and V in Worked Example 2.5 A are sum matrices, so here are T and T- I : 

LV = [_! 1 ] [1 -! _~] 
o -1 1 1 

U-'L-' = [1 
difference difference 

1 
1 

sum 
l] [l : J 

sum 

Question. (4 by 4) What are the pivots of T? What is its 4 by 4 inverse? 
The reverse order VL gives what matrix T*? What is the inverse of T*? 

44 Here are two more difference matrices, both important. But are they invertible? 

2 -1 

Cyclic C = -1 2 
0 -1 

-1 0 

0 
-1 

2 
-1 

-1 
0 

-1 
2 

Free ends F = 
1 -1 0 0 

-1 2 -1 0 
o -1 2-1 
o 0 -1 1 

One test is elimination-the fourth pivot fails. Another test is the detenninant, 
we don't want that. The best way is much faster, and independent of matrix size: 

Produce x =f. 0 so that C x = O. Do the same for F x = O. Not invertible. 

Show how both equations Cx = band Fx = b lead to 0 = bl + b2 + ... + bn . 

There is no solution for other b. 
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45 Elimination for a 2 by 2 block matrix: When you multiply the first block row by 
CA- 1 and subtract from the second row, the "Schur complement" S appears: 

A and D are square 
S = D -CA-1B. 

Multiply on the right to subtract A-I B times block column 1 from block column 2. 

[A B] [1 -A-IB] _? . o S 0 1 -. Fmd S for 

The block pivots are A and S. If they are invertible, so is [A B; CD]. 

46 How does the identity A(J + BA) = (J + AB)A connect the inverses of I + BA 
and I + AB? Those are both invertible or both singular: not obvious. 
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2.6 Elimination = Factorization: A = L U 

Students often say that mathematics courses are too theoretical. Well, not this section. 
It is almost purely practical. The goal is to describe Gaussian elimination in the most 
useful way. Many key ideas of linear algebra, when you look at them closely, are really 
factorizations of a matrix. The original matrix A becomes the product of two or three 
special matrices. The first factorization-also the most important in practice-comes now 
from elimination. The factors Land U are triangular matrices. The factorization that 
comes from elimination is A = L U. 

We already know V, the upper triangular matrix with the pivots on its diagonal. The 
elimination steps take A to V. We will show how reversing those steps (taking V back 
to A) is achieved by a lower triangular L. The entries of L are exactly the multipliers 
eij-which multiplied the pivot row j when it was subtracted from row i. 

Start with a 2 by 2 example. The matrix A contains 2, 1,6,8. The number to eliminate 
is 6. Subtract 3 times row 1 from row 2. That step is E2l in the forward direction with 
multiplier e2l = 3. The return step from V to A is L = E:;/ (an addition using +3): 

Forwardfrom A to V: E2lA = [_~ ~J [~ ~ ] = [~ ; ] = V 

Backfrom U to A: E,iu = g ~H~lJ= [~·n = A. 

The second line is our factorization LV = A. Instead of E:;l we write L. Move now to 
larger matrices with many E's. Then L will include all their inverses. 

Each step from A to V multiplies by a matrix Eij to produce zero in the (i, j) position. 
To keep this clear, we stay with the most frequent case-when no row exchanges are 
involved. If A is 3 by 3, we mUltiply by E2l and E31 and E32. The multipliers eij produce 
zeros in the (2, 1) and (3,1) and (3,2) positions-all below the diagonal. Elimination ends 
with the upper triangular V. 

Now move those E's onto the other side, where their inverses multiply V: 

(E32E3JE21)A~ V:be(!omes .. A = (E:;l E:;l E:;l) V which is A = LV. (1) . .. . \ 

The inverses go in opposite order, as they must. That product of three inverses is L. 
We have reached A = LU. Now we stop to understand it. 

Explanation and Examples 

First point: Every inverse matrix E- l is lower triangular. Its off-diagonal entry is eij, 
to undo the subtraction produced by -eij. The main diagonals of E and E-1 contain I's. 
Our example above had e21 = 3 and E = [-1 nand L = E-1 = U~]. 

Second point: Equation (1) shows a lower triangular matrix (the product of the Eij) 
multiplying A. It also shows all the Ei;t multiplying V to bring back A. This lower 
triangular product of inverses is L. 
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One reason for working with the inverses is that we want to factor A, not V. The 
"inverse form" gives A = LV. Another reason is that we get something extra, almost 
more than we deserve. This is the third point, showing that L is exactly right. 

Third point: Each multiplier.eij goes directly into its i, j position-unchanged-in the 
product of inverses which is L. Usually matrix multiplication will mix Up all the num­
bers. Here that doesn't happen. The order is right for the inverse matrices, to keep the .e's 
unchanged. The reason is given below in equation (3). 

Since each E-1 has 1 's down its diagonal, the final good point is that L does too. 

Example 1 Elimination subtracts ! times row 1 from row 2. The last step subtracts ~ 
times row 2 from row 3. The lower triangular L has .e21 = ! and.e32 = ~. Multiplying 
L V produces A: 

The (3, 1) multiplier is zero because the (3, 1) entry in A is zero. No operation needed. 

Example 2 Change the top left entry from 2 to 1. The pivots all become 1. The multi­
pliers are all 1. That pattern continues when A is 4 by 4: 

Special 
pattern A= 

1 100 
1 2 1 0 
o 121 
001 2 

1 
1 1 
o 1 1 
001 

1 

I 

1 0 0 
1 1 0 

1 1 
1 

These LV examples are showing something extra, which is very important in practice. 
Assume no row exchanges. When can we predict zeros in L and V? 

When a row of A starts with zeros, so does that row of L. 

When a column of A starts with zeros, so does that column of V. 

If a row starts with zero, we don't need an elimination step. L has a zero, which saves 
computer time. Similarly, zeros at the start of a column survive into V. But please realize: 
Zeros in the middle of a matrix are likely to be filled in, while elimination sweeps forward. 
We now explain why L has the multipliers.eij in position, with no mix-up. 

The key reason why A equals L U: Ask yourself about the pivot rows that are subtracted 
from lower rows. Are they the original rows of A? No, elimination probably changed them. 
Are they rows of V? Yes, the pivot rows never change again. When computing the third 
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row of V, we subtract multiples of earlier rows of V (not rows of A!): 

Row 3 of V = (Row 3 of A) - e31 (Row 1 of V) - e32 (Row 2 of V). (2) 

Rewrite this equation to see that the row [e 31 e32 I] is multiplying V: 

:cRzo-wSdf.4.>'·· .•••.• ·.;e~-t~()\y·.·i··p¥rJ)·H-e~2·~6w.~}?~f!).-¥J·lRbW .. ·.3·.~f,tJ>j •• ; (3) 

This is exactly row 3 of A = LV. That row of L holds e31 , e32 , 1. All rows look like this, 
whatever the size of A. With no row exchanges, we have A = LV. 

Better balance The L V factorization is "unsymmetric" because V has the pivots on its 
diagonal where L has 1 'So This is easy to change. Divide U by a diagonal matrix D that 
contains the pivots. That leaves a new matrix with 1 's on the diagonal: 

Split V into 

1 

It is convenient (but a little confusing) to keep the same letter V for this new upper trian­
gular matrix. It has 1 's on the diagonal (like L). Instead of the normal LV, the new form 
has D in the middle: Lower triangular L times diagonal D times upper triangular U. 

Th~·;W4'ii~~tllFrt4~loJj~~itp~~~e~lflttijj,(/'i'··.'~'ti}i···"~if';~;···'···:·.Lf>:tl·': 

Whenever you see LDV, it is understood that V has 1 's on the diagonal. Each row is 
divided by its first nonzero entry-the pivot. Then L and V are treated evenly in LDV: 

[ ~ ~] [~ ~ ] splits further into [ ~ ~] [ 2 5] [~ 1]· (4) 

The pivots 2 and 5 went into D. Dividing the rows by 2 and 5 left the rows [1 4] and 
[0 I] in the new V with diag~mal ones. The mUltiplier 3 is still in L. 

My own lectures sometimes stop at this point. The next paragraphs show how elimina­
tion codes are organized, and how long they take. If MATLAB (or any software) is available, 
you can measure the computing time by just counting the seconds. 

One Square System = Two Triangular Systems 

The matrix L contains our memory of Gaussian elimination. It holds the numbers that 
multiplied the pivot rows, before subtracting them from lower rows. When do we need this 
record and how do we use it in solving Ax = b? 

We need L as soon as there is a right side b. The factors L and V were completely 
decided by the left side (the matrix A). On the right side of Ax = b, we use L -1 and 
then V-I. That Solve step deals with two triangular matrices. 
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1.1?actor(int<>:.l-and tl,by eliIniI1ati9nOlltlleleftsld~m~fiixil) . 
·2···~gtvetfbl'\Viltd:eiiinirtatibl1(jrfjlli~ihgL,th¢fibaGk·silost1t4honfq{x ··.usihg(J). 

Earlier, we worked on A and b at the same time. No problem with that-just aug­
ment to [A b]. But most computer codes keep the two sides separate. The memory of 
elimination is held in Land U, to process b whenever we want to. The User's Guide to 
LAPACK remarks that "This situation is so common and the savings are so important that 
no provision has been made for solving a single system with just one subroutine." 

How does Solve work on b? First, apply forward elimination to the right side (the 
multipliers are stored in L, use them now). This changes b to a new right side c. We are 
really solving Lc = b. Then back substitution solves U x = c as always. The original 
system Ax = b is factored into two triangular systems: 

;(?QrWardand backW~rtd Solve Lc = b and then solve U x = c. (5) 

To see that x is correct, multiply U x = c by L. Then LUx = Lc is just Ax = b. 
To emphasize: There is nothing new about those steps. This is exactly what we have 

done all along. We were really solving the triangular system Lc = b as elimination went 
forward. Then back substitution produced x. An example shows what we actually did. 

Example 3 Forward elimination (downward) on Ax = b ends at U x = c: 

Ax = b 
u + 2v = 5 

4u + 9v = 21 
becomes u + 2v = 5 

v=1 Ux = c 

The multiplier was 4, which is saved in L. The right side used it to change 21 to I: 

Lc ··..b The lower triangular system 

Ux···. ·.c· The upper triangUlar system 

[! ~][c]=[2i] 

[~ ~] [x] = [i] 
gave c = [i]. 

gives x = [~] . 
Land U can go into the n2 storage locations that originally held A (now forgettable). 

The Cost of Elimination 

A very practical question is cost-or computing time. We can solve 1000 equations on a 
PC. What if n = 100, OOO? (Not if A is dense.) Large systems come up all the time 
in scientific computing, where a three-dimensional problem can easily lead to a million 
unknowns. We can let the calculation run overnight, but we can't leave it for 100 years. 
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The first stage of elimination, on column 1, produces zeros below the first pivot. To 
find each new entry below the pivot row requires one multiplication and one subtraction. 
We will count this first stage as n2 multiplications and n2 subtractions. It is actually less, 
n2 - n, because row 1 does not change. 

The next stage clears out the second column below the second pivot. The working 
matrix is now of size n - 1. Estimate this stage by (n - 1)2 multiplications and subtractions. 
The matrices are getting smaller as elimination goes forward. The rough count to reach V 
is the sum of squares n2 + (n - 1)2 + ... + 22 + 12. 

There is an exact formula ~n(n + !)(n + 1) for this sum of squares. When n is large, 

the ! and the 1 are not important. The number that matters is ~ n 3 . The sum of squares is 

like the integral of x2! The integral from 0 to n is ~n3: 

What about the right side h? Going forward, we subtract multiples of b l from the lower 
components b2 , . .. , bn • This is n - 1 steps. The second stage takes only n - 2 steps, 
because bi is not involved. The last stage of forward elimination takes one step. 

Now start back substitution. Computing Xn uses one step (divide by the last pivot). The 
next unknown uses two steps. When we reach Xl it will require n steps (n - 1 substitutions 
of the other unknowns, then division by the first pivot). The total count on the right side, 
from h to c to x-forward to the bottom and back to the top-is exactly n2 : 

[en - 1) + (n - 2) + ... + 1] + [1 + 2 + ... + (n -1) + llJ = 112. (6) 

To see that sum, pair off (n - I) with 1 and (n - 2) with 2. The pairings leave n terms, each 
equal to n. That makes n2 . The right side costs a lot less than the left side! 

. <$QI-Ve 1iil¢'bti~ht$iili!~¢ed~ n2 ~ultiplications:antl:n~'subtr4pti()~s. 
, Co " '-. - ._" '_-. ' ~ <': ,.; -' .' _ ,', '. '.' 

A band matrix B has only w nonzero diagonals below and also above its main diagonal. 
The zero entries outside the b~nd stay zero in elimination (zeros in L and V). Clearing out 
the first column needs w 2 multiplications and subtractions (w zeros to be produced below 
the pivot, each one using a pivot row of length w). Then clearing out all n columns, to 
reach V, needs no more than n w2 . This saves a lot of time: 

., .. , ; ...... ,. 

1 
change - n3 to nw2 : 

3 
Solve change n2 to 2nw .. 

Here are codes to factor A into LV and to solve Ax = h. The Teaching code slu 
stops right away if a number smaller than the tolerance "tol" appears in a pivot position. 
The Teaching Codes are on web.mit.edu/18.06/www. Professional codes will look down 
each column for the largest available pivot, to exchange rows and continue solving. 

MATLAB's backslash command x = A \h combines Factor and Solve to reach x. 
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·ful1cu(1)111l-,lYl •• ·.········s1tl(AJ 
% .... Sq1.lare Ltl factonzation with no row exchanges! 
[n, n] = size(A); tol = I.e - 6; 
for k = 1 : n 

if abs(A(k, k» < tol 
end % Cannot proceed without a row exchange: stop 
L(k, k) = 1; 
for i = k + 1 : n 

L(i, k) = A(i, k)/ A(k, k); % Multipliers for column k are put into L 
for j = k + 1 : n % Elimination beyond row k and column k 

A(i, j) = A(i, j) - L(i, k) * A(k, j); % Matrix still called A 
end 

end 
for j = k : n 

U(k, j) = A(k, j); 
end 

end 

% row k is settled, now name it U 

;~C~()I:l ••• ~ ..••.•• ;$l~~A',b). i 
%" 'S'olve Ax> busing Land U from slu(A). 
[L, U] = slu(A); s = 0; % No row exchanges! 
for k = 1 : n % Forwar4 elimination to solve Lc = b 

for j = 1 : k - 1 
s = s + L(k, j) * cU); % Add L times earlier cU) before c(k) 

end 
c(k) = b(k) - s; s = 0; % Find c(k) and reset s for next k 

end 
for k = n : -1 : 1 % Going backwards from x(n) to x(l) 

for j = k + 1 : n % Back substitution 
t = t + U(k, j) * xU); % U times later xU) 

end 
x(k) = (c(k) - t)/ U(k, k); % Divide by pivot 

end '" 
x = x'; % Transpose to column vector 

How long does it take to solve Ax = b? For a random matrix of order n = 1000, 
a typical time is I second. See web.mit.edu/18.06 and math.mit.eduflinearalgebra for 
the times in MATLAB, Maple, Mathematica, SciLab, Python, and R. The time is multiplied 
by about 8 when n is multiplied by 2. For professional codes go to netlib.org. 

According to this n3 rule, matrices that are 10 times as large (order 10,000) will take a 
thousand seconds. Matrices of order 100,000 will take a million seconds. This is too ex­
pensive without a supercomputer, but remember that these matrices are full. Most matrices 
in practice are sparse (many zero entries). In that case A = LU is much faster. 

For tridiagonal matrices of order 10,000, storing only the nonzeros, solving Ax = b 
is a breeze. Provided the code recognizes that A is tridiagonal. 
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• REVIEW OF THE KEY IDEAS • 

1. Gaussian elimination (with no row exchanges) factors A into L times V. 

2. The lower triangular L contains the numbers eij that multiply pivot rows, going from 
A to V. The product L V adds those rows back to recover A. 

3. On the right side we solve Lc = b (forward) and V x = c (backward). 

4. Factor: There are lCn3 - n) multiplications and subtractions on the left side. 

5. Solve: There are n2 multiplications and subtractions on the right side. 

6. For a band matrix, change ln 3 to nw2 and change n2 to 2wn. 

• WORKED EXAMPLES • 

2.6 A The lower triangular Pascal matrix L contains the famous "Pascal triangle". 
Gauss-Jordan found its inverse in the worked example 2.5 C. This problem connects L 
to the symmetric Pascal matrix P and the upper triangular V. The symmetric P has Pas­
cal's triangle tilted, so each entry is the sum of the entry above and the entry to the left. The 
n by n symmetric P is pascal(n) in MATLAB. 

Problem: Establish the amazing lower-upper factorization P = LV. 

pascal(4) = 

1 I 1 1 
1 2 3 4 
1 3 6 10 
1 4 10 20 

1 000 
1 100 
1 2 1 0 
133 1 

1 1 1 1 
o 1 2 3 
o 0 1 3 
000 1 

Then predict and check the n~xt row and column for 5 by 5 Pascal matrices. 
" 

= LV. 

Solution You could multiply LV to get P. Better to start with the symmetric P and 
reach the upper triangular V by elimination: 

I I I I I 1 1 1 1 1 1 I 1 I 1 1 

P= 
1 2 3 4 0 1 2 3 0 I 2 3 0 1 2 3 

=V. 
1 3 6 10 

~ 
0 2 5 9 

~ 
0 0 1 3 

~ 
0 0 1 3 

1 4 10 20 0 3 9 19 0 0 3 10 0 0 0 1 

The multipliers'€ij that entered these steps go perfectly into L. Then P = LV is a partic­
ularly neat example. Notice that every pivot is 1 on the diagonal of V. 

The next section will show how symmetry produces a special relationship between the 
triangular L and V. For Pascal, V is the "transpose" of L. 
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You might expect the MATLAB command lu(pascal(4)) to produce these L and V. 
That doesn't happen because the lu subroutine chooses the largest available pivot in each 
column. The second pivot will change from 1 to 3. But a "Cholesky factorization" does no 
row exchanges: V = chol(pascal(4)) 

The full proof of P = LV for all Pascal sizes is quite fascinating. The paper "Pascal 
Matrices" is on the course web page web.mit.edu/18.06 which is also available through 
MIT's OpenCourseWare at ocw.mit.edu. These Pascal matrices have so many remarkable 
properties-we will see them again. 

2.6 B The problem is: Solve P x = b = (1,0,0,0). This right side = column of I 
means that x will be the first column of p-I. That is Gauss-Jordan, matching the columns 
of P P -1 = I. We already know the Pascal matrices L and V as factors of P: 

Two triangular systems Lc = b (forward) u x = c (back). 

Solution The lower triangular system Lc = b is solved top to bottom: 

Cl = 1 
Cl + C2 = ° 
Cl + 2C2 + C3 = ° 
Cl + 3C2 + 3C3 + C4 = ° 

gives 

Cl = +1 
C2 =-1 
C3 = +1 
C4 =-1 

Forward elimination is multiplication by L -1. It produces the upper triangular system 
V x = c. The solution x comes as always by back substitution, bottom to top: 

Xl + X2 + X3 + X4 = 1 
X2 + 2X3 + 3X4 = -1 

X3 + 3X4 = 1 
X4 = -1 

gives 

Xl = +4 
X2 = -6 
X3 = +4 
X4 = -1 

I see a pattern in that x, but I don't know where it comes from. Try inv(pascal(4». 

Problem Set 2.6 

Problems 1-14 compute the factorization A = LV (and also A = LDV). 

1 (Important) Forward elimination changes [} 1]x = b to a triangular [A }]x = c: 

X+ Y =5 

X + 2y = 7 

X+ Y = 5 

y=2 [~ 1 5J 
2 7 [~ 1 5J 

1 2 

That step subtracted £21 - times row 1 from row 2. The reverse step adds 
£21 times row 1 to row 2. The matrix for that reverse step is L = . MUltiply 
this L times the triangular system [A }]x 1 = [~] to get - . In letters, 
L multiplies V x = c to give __ 

2 Write down the 2 by 2 triangular systems Lc = b and V x = c from Problem 1. 
Check that c = (5,2) solves the first one. Find x that solves the second one. 
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3 (Move to 3 by 3) Forward elimination changes Ax = b to a triangular V x = c: 

x+ y+ z=5 

x + 2y + 3z = 7 

x + 3y + 6z = 11 

x+ y+ z=5 

y + 2z = 2 

2y + 5z = 6 

x+ y+ z=5 

y +2z = 2 

z=2 

The equation z = 2 in V x = c comes from the original x + 3y + 6z = 11 in 
Ax = b by subtracting .e31 = times equation 1 and .e32 = times the 
final equation 2. Reverse that to recover [1 3 6 11] in the last row of A and b 
from the final [ 1 1 1 5 J and [0 1 2 2] and [0 0 I 2 J in V and c: 

Row 3 of [A b] = (.e 31 Row 1 + .e32 Row 2 + 1 Row 3) of [V c]. 

In matrix notation this is multiplication by L. So A = L V and b = Lc. 

4 What are the 3 by 3 triangular systems Lc = b and V x = c from Problem 3? 
Check that c = (5,2,2) solves the first one. Which x solves the second one? 

5 What matrix E puts A into triangular form EA = V? MUltiply by E-1 = L to 
factor A into LV: 

A= 0 4 2 . [
2 1 0] 
635 

6 What two elimination matrices E21 and E32 put A into upper triangular form 
E32E21A = V? Multiply by E3"l and E:;l to factor A into LV = E:;l E3"lV: 

A= 2 4 5 . [
1 1 1] 
040 

7 What three elimination matrices E21 , E31 , E32 put A into its upper triangular form 
E32E31E21A = V? Multiply by E3"l, E3"/ and E:;/ to factor A into L times V: 

A = [~ ~ ~] L - E:;l E:;l E321. 
345 

8 Suppose A is already lower triangular with 1 's on the diagonaL Then V = I! 

[
1 0 0] 

A=L= a 1 0 . 
bel 

The elimination matrices E21 , E31 , E32 contain -a then -b then -c. 

(a) Multiply E32E31 E21 to find the single matrix E that produces EA = I. 

(b) Multiply E:;/ E3"l E3"l to bring back L (nicer than E). 
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9 When zero appears in a pivot position, A = LV is not possible! (We are requiring 
nonzero pivots in V.) Show directly why these are both impossible: 

This difficulty is fixed by a row exchange. That needs a "permutation" P. 

10 Which number c leads to zero in the second pivot position? A row exchange is 
needed and A = LV will not be possible. Which c produces zero in the third pivot 
position? Then a row exchange can't help and elimination fails: 

A = [; ~ ~]. 
351 

11 What are Land D (the diagonal pivot matrix) for this matrix A? What is V in 
A = LV and what is the new V in A = LDV? 

Already triangular 
A = [~ i n 

12 A and B are symmetric across the diagonal (because 4 = 4). Find their triple factor­
izations LDV and say how V is related to L for these symmetric matrices: 

Symmetric A _ [2 - 4 
[

1 4 
and B = 4 12 

o 4 

13 (Recommended) Compute L and V for the symmetric matrix A: 

A= 

a a a a 
a b b b 
abc c 
abc d 

Find four conditions on a, b, c, d to get A = LV with four pivots. 

14 This nonsymmetric matrix will have the same L as in Problem 13: 

Find L and V for A= 

a r r r 
a b s s 
abc t 
abc d 

Find the four conditions on a, b, c, d, r, s, t to get A = L V with four pivots. 



2.6. Elimination = Factorization: A = L U 105 

Problems 15-16 use Land U (without needing A) to solve Ax = b. 

15 Solve the triangular system Lc = b to find c. Then solve U x = c to find x: 

L = [! ~ ] and U = [~ ~ ] and b = [I i] . 
For safety multiply LU and solve Ax = b as usual. Circle c when you see it. 

16 Solve Lc = b to find c. Then solve U x = c to find x. What was A? 

o 0] 
I 0 
I 1 

and u= [~ i t] and b= [~l 
17 (a) When you apply the usual elimination steps to L, what matrix do you reach? 

L = [e!1 ~ ~]. 
e31 e32 I 

(b) When you apply the same steps to I, what matrix do you get? 

(c) When you apply the same steps to LU, what matrix do you get? 

18 If A = LDU and also A = Ll Dl U1 with all factors invertible, then L = Ll and 
D = DI and U = Ul. "The three/actors are unique." 

19 

20 

Derive the equation Ll1 LD = Dl Ul U- 1• Are the two sides triangular or diagonal? 
Deduce L = Ll and U = Ul (they all have diagonall 's). Then D = Dl. 

Tridiagonal matrices have zero entries except on the main diagonal and the two ad­
jacent diagonals. Factor these into A = L U and A = L D L T : 

[

a a 0] 
and A = a a + b b . 

o b b +c [
1 1 0] 

A = 1 2 1 
012 

When T is tridiagonal, its Land U factors have only two nonzero diagonals. How 
would you take advant~ge of knowing the zeros in T, in a code for Gaussian elimi­
nation? Find Land U. \ 

Tridiagonal T= 

1 2 
2 3 
o I 
o 0 

o 0 
1 0 
2 3 
3 4 

21 If A and B have nonzeros in the positions marked by x, which zeros (marked by 0) 
stay zero in their factors Land U? 

A= 

x x x x 
x x x 0 
o x x x 
o 0 x x 

B= 

x x x 0 
x x 0 x 
x 0 x x 
o x x x 
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22 Suppose you eliminate upwards (almost unheard ot). Use the last row to produce 
zeros in the last column (the pivot is 1). Then use the second row to produce zero 
above the second pivot. Find the factors in the unusual order A = V L. 

Upper times lower 

23 Easy but important. If A has pivots 5, 9, 3 with no row exchanges, what are the pivots 
for the upper left 2 by 2 submatrix A2 (without row 3 and column 3)? 

Challenge Problems 

24 Which invertible matrices allow A = LV (elimination without row exchanges)? 
Good question! Look at each of the square upper left submatrices of A. 

All upper left k by k submatrices Ak must be invertible (sizes k = 1, ... , n). 

Explain that answer: Ak factors into __ because LV = [;k ~] [6k : l 
25 For the 6 by 6 second difference constant-diagonal matrix K, put the pivots and 

multipliers into K = LV. (L and V will have only two nonzero diagonals, because 
K has three.) Find a formula for the i, j entry of L -I, by software like MATLAB 
using inv(L) or by looking for a nice pattern. 

-1,2, -1 matrix K = 

2 -1 
-1 

= toeplitz([2 -1 0 0 0 0]) 

-1 
-1 2 

26 If you print K-1 , ;it doesn't look so good. But if you print 7 K-1 (when K is 6 by 6), 
that matrix looks wonderful. Write down 7 K- 1 by hand, following this pattern: 

1 Row 1 and column 1 are (6,5,4,3,2,1). 

2 On and above the main diagonal, row i is i times row 1. 

3 On and below the main diagonal, column j is j times column 1. 

MUltiply K times that 7 K-1 to produce 7 I. Here is that pattern for n = 3: 

3 by 3 case 
The determinant 
of this K is 4 [ 

2 -1 
(K)(4K-1

) = -1 2 
o -1 
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2.7 Transposes and Permutations 

We need one more matrix, and fortunately it is much simpler than the inverse. It is the 
"transpose" of A, which is denoted by AT. The columns of AT are the rows of A. 

When A is an m by n matrix, the transpose is n by m: 

Transpose If A = [~ ~ !] ilien AT = U ~ l 
You can write the rows of A into the columns of AT. Or you can write the columns of A 
into the rows of AT. The matrix "flips over" its main diagonal. The entry in row i, column j 
of AT comes from row j, column i of the original A: 

Exchange rows and columns 

The transpose of a lower triangular matrix is upper triangular. (But the inverse is still lower 
triangular.) The transpose of AT is A. 

Note MATLAB's symbol for the transpose of A is A'. Typing [I 2 3] gives a row vec­
tor and the column vector is v = [I 2 3] '. To enter a matrix M with second column 
w = [ 4 5 6 ]' you could define M = [ v w ]. Quicker to enter by rows and then 
transpose the whole matrix: M = [I 2 3; 4 5 6]'. 

The rules for transposes are very direct. We can transpose A + B to get (A + B)T. 
Or we can transpose A and B separately, and then add AT + BT-with the same result. 
The serious questions are about the transpose of a product A B and an inverse A-I: 

Sum 

Product 

Inverse 

The transpose of A + B is AT + BT. 

Thetranspose6f All is . CAB)T ==E TA?. 

The transpose of A-I is (A- l )T = (AT)-I. 

(1) 

(2) 

(3) 

Notice especially how BT AT comes in reverse order. For inverses, this reverse order 
was quick to check: B-1 A-I times AB produces I. To understand (AB)T = BT AT, 
start with (AX)T = x TAT: " 

A x combines the columns of A while x T AT combines the rows of AT. 

It is the same combination of the same vectors! In A they are columns, in AT they are rows. 
So the transpose of the column Ax is the row x TAT. That fits our formula (Ax) T = X TAT. 
Now we can prove the formula (AB)T = BT AT, when B has several columns. 

If B = [x 1 X2] has two columns, apply the same idea to each column. The columns 
of A B are Ax 1 and Ax 2. Their transposes are the rows of B T AT: 

Transposing AB = [A x 1 A x 2 ••• ] gives [ : I~: ] which is BT AT (4) 
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The right answer BT AT comes out a row at a time. Here are numbers in (AB)T = BT AT: 

The reverse order rule extends to three or more factors: (ABC)T equals CT BT AT. 

If A = LDU then AT = UTDTLT. The pivot matrix has D = DT. 

Now apply this product rule to both sides of A-I A = I. On one side, IT is I. We 
confirm the rule that (A -1 ) T is the inverse of AT, because their product is I: 

Transpose of inverse (5) 

Similarly AA-1 = I leads to (A- 1)T AT = I. We can invert the transpose or we can 
transpose the inverse. Notice especially: AT is invertible exactly when A is invertible. 

Example 1 The inverse of A = [~ n is A-I = [_~ ~]. The transpose is AT = [~ f ]. 
are both equal to [1 -6] 

01' 

The Meaning of Inner Products 

We know the dot product (inner product) of x and y. It is the sum of numbers Xi Yi. 

Now we have a better way to write x . y, without using that unprofessional dot. Use 
matrix notation instead: 

T is inside The dot product or inner product is x T Y (1 x n) (n xl) 

T is outside The rank one product or outer product is xy T (n x 1)(1 x n) 

X T Y is a number, xy T is a matrix. Quantum mechanics would write those as < x Iy > 
(inner) and Ix >< y I (outer). I think the world is governed by linear algebra, but physics 
disguises it well. Here are examples where the inner product has meaning: 

From mechanics 
" 

From circuits 

From economics 

Work = (Movements) (Forces) = x T f 
Heat loss = (Voltage drops) (Currents) = e T y 

Income = (Quantities) (Prices) = q T P 

We are really close to the heart of applied mathematics, and there is one more point to 
explain. It is the deeper connection between inner products and the transpose of A. 

We defined AT by flipping the matrix across its main diagonal. That's not mathematics. 
There is a better way to approach the transpose. AT is the matrix that makes these two 
inner products equal for every x and y: 

Inner product of Ax with y = Inner product of x with AT y 
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Example 2 Start with A = [ - ~ _ : ~] x = [~~] y = [~~] 
On one side we have Ax mUltiplying y: (X2 - XI)YI + (X3 - X2)Y2 
That is the same as Xl (-yt} + X2(Yl - Y2) + X3(Y2). Now x is multiplying AT y. 

[ 
-Yl ] [-1 0] 

AT y must be Yl Y2 Y2 which produces AT = ~ -; as expected. 

Example 3 Will you allow me a little calculus? It is extremely important or I wouldn't 
leave linear algebra. (This is really linear algebra for functions x (t).) The difference ma­
trix changes to a derivative A = d J d t. Its transpose will now come from (dx J d t , y) = 
(x,-dyJdt). 

The inner product changes from a finite sum of XkYk to an integral of x(t)y(t). 

Inner product 
of functions 

Transpose rule 
(AX)Ty = xT(ATy) 

00 

x T Y = (x, y) = f x(t) yet) dt by definition 

-00 

00 00 

f ~~ yet) dt = f x(t) ( - dt) dt shows AT 
-00 -00 

(6) 

I hope you recognize "integration by parts". The derivative moves from the first 
function x(t) to the second function yet). During that move, a minus sign appears. 
This tells us that the "transpose" of the derivative is minus the derivative. 

The derivative is anti-symmetric: A = dfdt and AT = -dfdt. Symmetric matrices 
have AT = A, anti-symmetric matrices have AT = -A. In some way, the 2 by 3 difference 
matrix above followed this pattern. The 3 by 2 matrix AT was minus a difference matrix. 
It produced YI - Y2 in the middle component of AT y instead of the difference Y2 - YI. 

Symmetric Matrices 

For a symmetric matrix, transposing A to AT produces no change. Then AT = A. Its (j, i) 
entry across the main diagon~l equals its (i, j) entry. In my opinion, these are the most 
important matrices of all. 

.. ... ..... . .. ...... ...... ...... . .. , . .. . ...... T,·.i/.i ..<\ 

j;~Et=INrrl(l~:.A,~ym'ftl:~·trj¢iitqttJ,i;h:a~ A = A. 'EPis·D,1¢an~th.~t . 

Symmetric matrices A = [~ ;] = AT and D = [~ l~] = DT. 

The inverse of a symmetric matrix is also symmetric. The transpose of A-I is 
(A-If = (AT)-I = A-I. That says A-I is symmetric (when A is invertible): 

Symmetric inverses A-I = [_~ -i] and D-I = [~ ~.l]. 
Now we produce symmetric matrices by multiplying any matrix R by RT. 
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Symmetric Products RT Rand RRT and LDLT 

Choose any matrix R, probably rectangular. Multiply RT times R. Then the product RT R 
is automatically a square symmetric matrix: 

Thetransposeof RTR is RT(RT)T which is RTR. (7) 

That is a quick proof of symmetry for RT R. We could also look at the (i, j) entry of RT R. 
It is the dot product of row i of RT (column i of R) with column j of R. The (j, i) entry 
is the same dot product, column j with column i. So RT R is symmetric. 

The matrix RRT is also symmetric. (The shapes of Rand RT allow multiplication.) 
But RRT is a different matrix from RT R. In our experience, most scientific problems that 
start with a rectangular matrix R end up with RT R or RRT or both. As in least squares. 

Example 4 [
-1 1 

Multiply R = 0-1 [-1 0] n and RT = ~ -: in both orders. 

[ 
2 -1] [ 1 -1 0] 

RRT = -1 2 and RT R = - ~ _ ~ - ~ are both symmetric matrices. 

The product RT R is n by n. In the opposite order, RRT is m by m. Both are symmetric, 
with positive diagonal (why?). But even if m = n, it is not very likely that RT R = RRT. 
Equality can happen, but it is abnormal. 

Symmetric matrices in elimination AT = A makes elimination faster, because we can 
work with half the matrix (plus the diagonal). It is true that the upper triangular U is 
probably not symmetric. The symmetry is in the triple product A = LDU. Remember 
how the diagonal matrix D of pivots can be divided out, to leave 1 's on the diagonal of both 
Land U: 

[~ ;] = [~ ~] 

= [~, n 
L U misses the symmetry of A 

L D U captures the symmetry 

Now U is the transpose of L. 

When A is symmetric, the usual form A = LDU becomes A = LDLT. The final U 
(with 1 's on the diagonal) is the transpose of L (also with 1 's on the diagonal). The 
diagonal matrix D containing the pivots is symmetric by itself. 

The symmetric factorization of a symmetric matrix is A = L D LT. 

Notice that the transpose of LDLT is automatically (LT)T DT LT which is LDLT again. 
The work of elimination is cut in half, from n3 /3 multiplications to n 3 /6. The storage is 
also cut essentially in half. We only keep Land D, not U which is just LT. 
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Permutation Matrices 

The transpose plays a special role for a permutation matrix. This matrix P has a single "1" 
in every row and every column. Then P T is also a permutation matrix-maybe the same 
or maybe different. Any product PI P2 is again a permutation matrix. We now create every 
P from the identity matrix, by reordering the rows of I. 

The simplest permutation matrix is P = I (no exchanges). The next simplest are the 
row exchanges Pij. Those are constructed by exchanging two rows i and j of I. Other 
permutations reorder more rows. By doing all possible row exchanges to I, we get all 
possible permutation matrices: 

Example 5 There are six 3 by 3 permutation matrices. Here they are without the zeros: 

There are n! permutation matrices of order n. The symbol n! means "n factorial," the 
product of the numbers (1)(2) ... (n). Thus 3! = (1)(2)(3) which is 6. There will be 24 
permutation matrices of order n = 4. And 120 permutations of order 5. 

There are only two permutation matrices of order 2, namely [A f] and [f A], 
Important: p-1 is also a permutation matrix. Among the six 3 by 3 P's displayed 

above, the four matrices on the left are their own inverses. The two matrices on the right 
are inverses of each other. In all cases, a single row exchange is its own inverse. If we 
repeat the exchange we are back to I. But for P32 P21 , the inverses go in opposite order 
as always. The inverse is P 21 P32. 

More important: p-1 is always the same as pT, The two matrices on the right are 
transposes-and inverses-of each other. When we multiply P pT, the "1" in the first row 
of P hits the "1" in the first column of p T (since the first row of P is the first column of 
p T). It misses the ones in all the other columns. So P pT = I. 

Another proof of pT = p-l looks at P as a product of row exchanges. Every row 
exchange is its own transpose and its own inverse. pT and p-l both come from the 
product of row exchanges in reverse order. So pT and p-I are the same. 

Symmetric matrices led to A = L D L T, Now permutations lead to P A = L U, 
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The PA = L U Factorization with Row Exchanges 

We sure hope you remember A = L U. It started with A = (E'2/ ... Ei;t ... )U. Every 
elimination step was carried out by an Eij and it was inverted by Ei;t. Those inverses were 
compressed into one matrix L, bringing U back to A. The lower triangular L has 1 's on 
the diagonal, and the result is A = L U. 

This is a great factorization, but it doesn't always work. Sometimes row exchanges 
are needed to produce pivots. Then A = (E-l ... p-1 ••• E-1 ••• p-1 ···)U. Every row 
exchange is carried out by a Pij and inverted by that Pij. We now compress those row ex­
changes into a single permutation matrix P. This gives a factorization for every invertible 
matrix A-which we naturally want. 

The main question is where to collect the Pij's. There are two good possibilities­
do all the exchanges before elimination, or do them after the Eij's. The first way gives 
P A = L U. The second way has a permutation matrix PI in the middle. 

1. The row exchanges can be done in advance. Their product P puts the rows of A in 
the right order, so that no exchanges are needed for PA. Then PA = L U. 

2. If we hold row exchanges until after elimination, the pivot rows are in a strange order. 
PI puts them in the correct triangular order in U 1. Then A = LIP 1 U 1. 

P A = LUis constantly used in all computing (and in MATLAB). We will concentrate on 
this form. Most numerical analysts have never seen the other form. 

The factorization A = LI PI UI might be more elegant. If we mention both, it is because 
the difference is not well known. Probably you will not spend a long time on either one. 
Please don't. The most important case has P = I, when A equals L U with no exchanges. 

For this matrix A, exchange rows 1 and 2 to put the first pivot in its usual place. 
Then go through elimination on P A: 

[! ~ IJ [1 2 1 -+ 0 1 
9'., 2 7 [~ ~ ~] -+ [~ ~ ~]. 

03700 4 
A PA e31 = 2 e32 = 3 

The matrix P A has its rows in good order, and it factors as usual into L U: 

P = [ O~ 61 O~] [1 0 0] [1 2 1] 
P A = ~ ~ ~ 6 ~ ! = L U. (8) 

We started with A and ended with U. The only requirement is invertibility of A. 
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In MATLAB, A([r k],:) = A([k r],:) exchanges row k with row r below it (where the 
kth pivot has been found). Then the lu code updates Land P and the sign of P: 

This is part of 
[L, U, P] = lu(A) 

A([r k], :) = A([k r], :); 
L([r k], 1 : k - 1) = L([k r], 1 : k - 1); 
P([r k],:) = perk r], :); 
sign = -sign 

The "sign" of P tells whether the number of row exchanges is even (sign = +1). 
An odd number of row exchanges will produce sign = -1. At the start, P is I and sign 
= + 1. When there is a row exchange, the sign is reversed. The final value of sign is the 
determinant of P and it does not depend on the order of the row exchanges. 

For P A we get back to the familiar L U. This is the usual factorization. In reality, 
lu(A) often does not use the first available pivot. Mathematically we accept a small pivot­
anything but zero. It is better if the computer looks down the column for the largest pivot. 
(Section 9.1 explains why this "partial pivoting" reduces the roundoff error.) Then P may 
contain row exchanges that are not algebraically necessary. Still P A = L U. 

Our advice is to understand permutations but let the computer do the work. Calculations 
of A = L U are enough to do by hand, without P. The Teaching Code splu(A) factors 
PA = L U and splv(A, b) solves Ax = b for any invertible A. The program splu stops if 
no pivot can be found in column k. Then A is not invertible. 

• REVIEW OF THE KEY IDEAS • 

1. The transpose puts the rows of A into the columns of AT. Then (AT)ij = Aji. 

2. The transpose of AB is BT AT. The transpose of A-I is the inverse of AT. 

3. The dot product is x • y" = X T y. Then (Ax) T y equals the dot product x T (AT Y ). 

4. When A is symmetric (AT = A), its LDU factorization is symmetric: A = LDLT. 

5. A permutation matrix P has a 1 in each row and column, and pT = p-l. 

6. There are n! permutation matrices of size n. Half even, half odd. 

7. If A is invertible then a permutation P will reorder its rows for P A = L U. 
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• WORKED EXAMPLES • 

2.7 A Applying the pennutation P to the rows of A destroys its symmetry: 

[
0 1 0] 

P = 0 0 1 
1 0 0 [

1 4 5] 
A = 4 2 6 563 [

4 2 6] 
PA = 5 6 3 

1 4 5 

What pennutation Q applied to the columns of PA will recover symmetry in PAQ: 
The numbers 1,2,3 must come back to the main diagonal (not necessarily in order). 
Show that Q is pT, so that symmetry is saved by PAQ = PApT. 

Solution To recover symmetry and put "2" back on the diagonal, column 2 of P A 
must move to column 1. Column 3 of PA (containing "3") must move to column 2. 
Then the" 1 " moves to the 3, 3 position. The matrix that pennutes columns is Q: 

[
4 2 6] 

PA = 5 6 3 
145 [

0 0 1] 
Q = 1 0 0 

o 1 0 [
2 6 4] 

P A Q = 6 3 5 is symmetric. 
4 5 1 

The matrix Q is pT. This choice always recovers symmetry, because PApT is guaranteed 
to be symmetric. (Its transpose is again PApT.) The matrix Q is also p-1 , because the 
inverse of every permutation matrix is its transpose. 

If D is a diagonal matrix, we are finding that PDP T is also diagonal. When P moves 
row 1 down to row 3, pT on the right will move column 1 to column 3. The (1,1) entry 
moves down to (3, 1) and over to (3,3). 

2.7 B Find the symmetric factorization A = LDLT for the matrix A above. Is this A 
invertible? Find also the P Q = L U factorization for Q, which needs row exchanges. 

Solution To factor A into L D L T we eliminate below the pivots: 

[1 4 5] [1 4 5] [1 4 5] A = 4 2 6 -+ 0 -14 -14 -+ 0 -14 -14 = U. 
5 6 3 0 -14 -22 0 0 -8 

The multipliers were £21 = 4 and £31 = 5 and .e32 = 1. The pivots 1, -14, -8 go into D. 
When we divide the rows of U by those pivots, L T should appear: 

Symmetric 
factorization 
when A = AT 

A=LDLT
= [! ~ ~] [1 -14 ] [~ ~ ~]. 

5 1 1 -8 0 0 1 

This matrix A is invertible because it has three pivots. Its inverse is (LT)-l D-1 L-1 and 
A -1 is also symmetric. The numbers 14 and 8 will turn up in the denominators of A-I. 
The "detenninant" of A is the product of the pivots (I) ( -14) (-8) = 112. 
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Any permutation matrix Q is invertible. Here elimination needs two row exchanges: 

[
0 0 1] 

Q = 1 0 0 
o 1 0 

rows 
~ 

1#2 [
1 0 0] o 1 0 = I. 
o 0 1 

With A = Q, the PQ = (L)(U) factorization is the same as Q-I Q = (I)(I). 

2.7 C For a rectangular A, this saddle-point matrix S is symmetric and important: 

Block matrix 
from least squares S = [1 T ~] = ST has size m + n. 

Apply block elimination to find a block factorization S = LDLT. Then test invertibility: 

S is invertible ~ A T A is invertible ~ A x =1= 0 whenever x =1= 0 

Solution The first block pivot is I. The matrix to mUltiply row 1 is certainly AT: 

Block elimination S = [1 T ~ ] goes to [~ _:T A ]. This is U. 

The block pivot matrix D contains I and - AT A. Then Land L T contain AT and A: 

Block factorization S = LDLT = [1T ~] [~ _~T A] [~ 1]-
L is certainly invertible, with diagonal 1 's from I. The inverse of the middle matrix 
involves (AT A)-I. Section 4.2 answers a key question about the matrix AT A: 

When is AT A invertible? Answer: A must have independent columns. 
Then Ax =0 only if x =0. Otherwise Ax = 0 will lead to AT Ax =0. 

Problem Set 2.7 

Questions 1-7 are about the rules for transpose matrices. 

1 Find AT and A-I and (A-I)T and (AT)-l for 

A = [~ ~ ] and also A = [! ~ ] . 
2 Verify that (AB)T equals BT AT but those are different from AT BT: 

A = [~ i] B = [~ i] 
In case AB = BA (not generally true!) how do you prove that BT AT = AT BT? 
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3 (a) The matrix ((AB)-l)T comes from (A-I? and (B-l)T. In what order? 

(b) If U is upper triangular then (U -1 ) T is __ triangular. 

4 Show that A2 = 0 is possible but AT A = 0 is not possible (unless A = zero matrix). 

5 (a) The row vector x T times A times the column y produces what number? 

xTAy = [0 1] [! ; ~] [!] = _ 

(b) This is the row x T A = times the column y = (0,1,0). 

(c) This is the row x T = [0 1] times the column Ay = __ 

6 The transpose of a block matrix M = [~g] is MT = . Test an example. 
Under what conditions on A, B, C, D is the block matrix symmetric? 

7 True or false: 

(a) The block matrix [! ~ ] is automatically symmetric. 

(b) If A and B are symmetric then their product A B is symmetric. 

(c) If A is not symmetric then A -1 is not symmetric. 

(d) When A, B, C are symmetric, the transpose of ABC is CBA. 

Questions 8-15 are about permutation matrices. 

8 Why are there n! permutation matrices of order n? 

9 If PI and P2 are permutation matrices, so is PI P2. This still has the rows of I in 
some order. Give examples with P1P2 =f:. P2P1 and P3 P4 = P4P3. 

10 There are 12 "even" permutations of (1, 2, 3, 4), with an even number of exchanges. 
Two of them are (1,2,3,4) with no exchanges and (4,3,2,1) with two exchanges. 
List the other ten. Instead of writing each 4 by 4 matrix, just order the numbers. 

11 Which permutatio~ makes P A upper triangular? Which permutations make PI AP2 

lower triangular? Multiplying A on the right by P2 exchanges the of A. 

[
0 0 6] 

A= 1 2 3 . 
045 

12 Explain why the dot product of x and y equals the dot product of P x and P y. 
Then from (P x ) T (P y) = X T Y deduce that P T P = I for any permutation. With 
x = (1,2,3) and y = (1,4,2) choose P to show that P x • y is not always x . P y. 

13 (a) Find a 3 by 3 permutation matrix with p3 = I (but not P = 1). 

(b) Find a 4 by 4 permutation P with p4 =f:. I. 
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14 If P has 1 's on the antidiagonal from (1, n) to (n, 1), describe PAP. Note P = pT. 

15 All row exchange matrices are symmetric: pT = P. Then pT P = I becomes 
p 2 = I. Other permutation matrices mayor may not be symmetric. 

(a) If P sends row 1 to row 4, then p T sends row to row __ 
When pT = P the row exchanges come in pairs with no overlap. 

(b) Find a 4 by 4 example with P T = P that moves all four rows. 

Questions 16-21 are about symmetric matrices and their factorizations. 

16 If A = AT and B = BT, which ofthese matrices are certainly symmetric? 

(b) (A + B)(A - B) (c) ABA (d) ABAB. 

17 Find 2 by 2 symmetric matrices A = AT with these properties: 

(a) A is not invertible. 

(b) A is invertible but cannot be factored into L U (row exchanges needed). 

(c) A can be factored into L D L T but not into L L T (because of negative D). 

18 (a) How many entries of A can be chosen independently, if A = AT is 5 by 5? 

(b) How do Land D (still 5 by 5) give the same number of choices in LDLT? 

(c) How many entries can be chosen if A is skew-symmetric? (AT = -A). 

19 Suppose R is rectangular (m by n) and A is symmetric (m by m). 

(a) Transpose RT AR to show its symmetry. What shape is this matrix? 

(b) Show why RT R has no negative numbers on its diagonal. 

20 Factor these symmetric, matrices into A = L D LT. The pivot matrix D is diagonal: 
" 

A = [; ~ ] and A = [! ~ ] [ 2 -1 0] 
and A = -1 2 -1 . 

o -1 2 

21 After elimination clears out column 1 below the first pivot, find the symmetric 2 by 
2 matrix that appears in the lower right comer: 

[
2 4 8] 

Start from A = 4 3 9 
890 and A = [~ ; ~ l 
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Questions 22-24 are aboutthe factorizations PA = L U and A = LIP 1 U 1-

22 Find the P A = L U factorizations (and check them) for 

A = [~ ~ i] and A = U ~ !l 
23 Find a 4 by 4 permutation matrix (call it A) that needs 3 row exchanges to reach the 

end of elimination. For this matrix, what are its factors P, L, and U? 

24 Factor the following matrix into PA = L U. Factor it also into A - L 1 PI U1 

(hold the exchange of row 3 until 3 times row 1 is subtracted from row 2): 

[
0 1 2] 

A= 0 3 8 . 
2 1 1 

25 Extend the slu code in Section 2.6 to a code splu that factors P A into L U . 

26 Prove that the identity matrix cannot be the product of three row exchanges (or five). 
It can be the product of two exchanges (or four). 

27 (a) Choose E21 to remove the 3 below the first pivot. Then mUltiply E21AEi1 to 
remove both 3 's: 

3 0] 
11 4 
4 9 [

1 0 0] 
is going toward D = 0 2 0 . 

o 0 1 

(b) Choose E32 to remove the 4 below the second pivot. Then A is reduced to D 
by E32E21AEi1 Ej2 = D. Invert the E's to find L in A = LDLT. 

28 If every row of a 4 by 4 matrix contains the numbers 0,1,2,3 in some order, can the 
matrix be symmetric? 

29 Prove that no '.reordering of rows and reordering of columns can transpose a typical 
matrix. (Watch the diagonal entries.) 

The next three questions are about applications of the identity (A x) T Y = X T (A T y). 

30 Wires go between Boston, Chicago, and Seattle. Those cities are at voltages XB, Xc, 

Xs. With unit resistances between cities, the currents between cities are in y: 

y = Ax is [~~~] = [~ -~ -~] [~~] . 
YBS 1 0 -1 Xs 

(a) Find the total currents AT y out ofthe three cities. 

(b) Verify that (Ax) T y agrees with x T (AT y )-six terms in both. 
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31 Producing Xl trucks and X2 planes needs Xl + 50X2 tons of steel, 40XI + 1000x2 
pounds of rubber, and 2XI + 50X2 months oflabor. If the unit costs YI, Y2, Y3 are 
$700 per ton, $3 per pound, and $3000 per month, what are the values of one truck 
and one plane? Those are the components of AT y. 

32 Ax gives the amounts of steel, rubber, and labor to produce x in Problem 31. Find A. 
Then Ax • y is the of inputs while x • AT Y is the value of __ 

33 The matrix P that mUltiplies (x, y, z) to give (z, X, y) is also a rotation matrix. 
Find P and P 3 . The rotation axis a = (1, 1, 1) doesn't move, it equals P a. 
What is the angle of rotation from v = (2,3, -5) to Pv = (-5,2, 3)? 

34 Write A = [l;] as the product E H of an elementary row operation matrix E and a 
symmetric matrix H. 

35 Here is a new factorization of A into triangular (with 1 's) times symmetric: 

Start from A = LDU. Then A = L(UT)-l times UT DU. 

Why is L(UT)-1 triangular? Its diagonal is alII's. Why is UT DU symmetric? 

36 A group of matrices includes A B and A -1 if it includes A and B. "Products and 
inverses stay in the group." Which of these sets are groups? 
Lower triangular matrices L with 1 's on the diagonal, symmetric matrices S, 
positive matrices M, diagonal invertible matrices D, permutation matrices P, 
matrices with QT = Q-I. Invent two more matrix groups. 

Challenge Problems 

37 A square northwest matrix B is zero in the southeast comer, below the antidiagonal 
that connects (1, n) to (n, 1). Will BT and B2 be northwest matrices? Will B-1 be 
northwest or southeast? What is the shape of BC = northwest times southeast? 

38 If you take powers of a permutation matrix, why is some pk eventually equal to I? 

Find a 5 by 5 permutatioh P so that the smallest power to equal I is P 6 . 

39 (a) Write down any 3 by 3 matrix A. Split A into B + C where B = BT is 
symmetric and C = -CT is anti-symmetric. 

(b) Find formulas for Band C involving A and AT. We want A = B + C with 
B = BT and C = -CT. 

40 Suppose QT equals Q-l (transpose equals inverse, so QT Q = l). 

(a) Show that the columns ql, ... , qn are unit vectors: Ilq dl2 = 1. 

(b) Show that every two columns of Q are perpendicular: q T q 2 = O. 

(c) Find a 2 by 2 example with first entry qll = cos e. 




